���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/xampp/perl/vendor/lib/Math/Prime/Util/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/xampp/perl/vendor/lib/Math/Prime/Util/RandomPrimes.pm
package Math::Prime::Util::RandomPrimes;
use strict;
use warnings;
use Carp qw/carp croak confess/;
use Math::Prime::Util qw/ prime_get_config
                          verify_prime
                          is_provable_prime_with_cert
                          primorial prime_count nth_prime
                          is_prob_prime is_strong_pseudoprime
                          next_prime prev_prime
                          urandomb urandomm random_bytes
                        /;

BEGIN {
  $Math::Prime::Util::RandomPrimes::AUTHORITY = 'cpan:DANAJ';
  $Math::Prime::Util::RandomPrimes::VERSION = '0.73';
}

BEGIN {
  do { require Math::BigInt;  Math::BigInt->import(try=>"GMP,Pari"); }
    unless defined $Math::BigInt::VERSION;

  use constant OLD_PERL_VERSION=> $] < 5.008;
  use constant MPU_MAXBITS     => (~0 == 4294967295) ? 32 : 64;
  use constant MPU_64BIT       => MPU_MAXBITS == 64;
  use constant MPU_32BIT       => MPU_MAXBITS == 32;
  use constant MPU_MAXPARAM    => MPU_32BIT ? 4294967295 : 18446744073709551615;
  use constant MPU_MAXDIGITS   => MPU_32BIT ?         10 : 20;
  use constant MPU_USE_XS      => prime_get_config->{'xs'};
  use constant MPU_USE_GMP     => prime_get_config->{'gmp'};

  *_bigint_to_int = \&Math::Prime::Util::_bigint_to_int;
}

################################################################################

# These are much faster than straightforward trial division when n is big.
# You'll want to first do a test up to and including 23.
my @_big_gcd;
my $_big_gcd_top = 20046;
my $_big_gcd_use = -1;
sub _make_big_gcds {
  return if $_big_gcd_use >= 0;
  if (prime_get_config->{'gmp'}) {
    $_big_gcd_use = 0;
    return;
  }
  if (Math::BigInt->config()->{lib} !~ /^Math::BigInt::(GMP|Pari)/) {
    $_big_gcd_use = 0;
    return;
  }
  $_big_gcd_use = 1;
  my $p0 = primorial(Math::BigInt->new( 520));
  my $p1 = primorial(Math::BigInt->new(2052));
  my $p2 = primorial(Math::BigInt->new(6028));
  my $p3 = primorial(Math::BigInt->new($_big_gcd_top));
  $_big_gcd[0] = $p0->bdiv(223092870)->bfloor->as_int;
  $_big_gcd[1] = $p1->bdiv($p0)->bfloor->as_int;
  $_big_gcd[2] = $p2->bdiv($p1)->bfloor->as_int;
  $_big_gcd[3] = $p3->bdiv($p2)->bfloor->as_int;
}

################################################################################


################################################################################



# For random primes, there are two good papers that should be examined:
#
#  "Fast Generation of Prime Numbers and Secure Public-Key
#   Cryptographic Parameters" by Ueli M. Maurer, 1995
#  http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.26.2151
#  related discussions:
#      http://www.daimi.au.dk/~ivan/provableprimesproject.pdf
#      Handbook of Applied Cryptography by Menezes, et al.
#
#  "Close to Uniform Prime Number Generation With Fewer Random Bits"
#   by Pierre-Alain Fouque and Mehdi Tibouchi, 2011
#   http://eprint.iacr.org/2011/481
#
#  Some things to note:
#
#    1) Joye and Paillier have patents on their methods.  Never use them.
#
#    2) The easy method of next_prime(random number), known as PRIMEINC, is
#       fast but gives a terrible distribution.  It has a positive bias and
#       most importantly the probability for a prime is proportional to its
#       gap, meaning some numbers in the range will be thousands of times
#       more likely than others).  On the contrary however, nobody has a way
#       to exploit this, and it's not-uncommon to see used.
#
# We use:
#   TRIVIAL range within native integer size (2^32 or 2^64)
#   FTA1    random_nbit_prime with 65+ bits
#   INVA1   other ranges with 65+ bit range
# where
#   TRIVIAL = monte-carlo method or equivalent, perfect uniformity.
#   FTA1    = Fouque/Tibouchi A1, very close to uniform
#   INVA1   = inverted FTA1, less uniform but works with arbitrary ranges
#
# The random_maurer_prime function uses Maurer's FastPrime algorithm.
#
# If Math::Prime::Util::GMP is installed, these functions will be many times
# faster than other methods (e.g. Math::Pari monte-carlo or Crypt::Primes).
#
# Timings on Macbook.
# The "with GMP" numbers use Math::Prime::Util::GMP 0.44.
# The "no GMP" numbers are with no Math::BigInt backend, so very slow in comparison.
# If another backend was used (GMP, Pari, LTM) it would be more comparable.
#
#                   random_nbit_prime         random_maurer_prime
#    n-bits       no GMP   w/ MPU::GMP        no GMP   w/ MPU::GMP
#    ----------  --------  -----------       --------  -----------
#       24-bit        1uS      same             same       same
#       64-bit        5uS      same             same       same
#      128-bit     0.12s          70uS         0.29s         166uS
#      256-bit     0.66s         379uS         1.82s         800uS
#      512-bit     7.8s        0.0022s        16.2s        0.0044s
#     1024-bit    ----         0.019s        ----          0.037s
#     2048-bit    ----         0.23s         ----          0.35s
#     4096-bit    ----         2.4s          ----          5.2s
#
# Random timings for 10M calls on i4770K:
#    0.39   Math::Random::MTwist 0.13
#    0.41   ntheory                                      <==== us
#    0.89   system rand
#    1.76   Math::Random::MT::Auto
#    5.35   Bytes::Random::Secure OO       w/ISAAC::XS
#    7.43   Math::Random::Secure           w/ISAAC::XS
#   12.40   Math::Random::Secure
#   12.78   Bytes::Random::Secure OO
#   13.86   Bytes::Random::Secure function w/ISAAC::XS
#   21.95   Bytes::Random::Secure function
#  822.1    Crypt::Random
#
# time perl -E 'use Math::Random::MTwist "irand32"; irand32() for 1..10000000;'
# time perl -E 'sub irand {int(rand(4294967296));} irand() for 1..10000000;'
# time perl -E 'use Math::Random::MT::Auto; sub irand { Math::Random::MT::Auto::irand() & 0xFFFFFFFF } irand() for 1..10000000;'
# time perl -E 'use Math::Random::Secure qw/irand/; irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure qw/random_bytes/; sub irand {return unpack("L",random_bytes(4));} irand() for 1..10000000;'
# time perl -E 'use Bytes::Random::Secure; my $rng = Bytes::Random::Secure->new(); sub irand {return $rng->irand;} irand() for 1..10000000;'
# time perl -E 'use Crypt::Random qw/makerandom/; sub irand {makerandom(Size=>32, Uniform=>1, Strength=>0)} irand() for 1..100_000;'
# > haveged daemon running to stop /dev/random blocking
# > Both BRS and CR have more features that this isn't measuring.
#
# To verify distribution:
#   perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_nbit_prime(6)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'
#   perl -Iblib/lib -Iblib/arch -MMath::Prime::Util=:all -E 'my %freq; $n=1000000; $freq{random_prime(1260437,1260733)}++ for (1..$n); printf("%4d %6.3f%%\n", $_, 100.0*$freq{$_}/$n) for sort {$a<=>$b} keys %freq;'

# Sub to call with low and high already primes and verified range.
my $_random_prime = sub {
    my($low,$high) = @_;
    my $prime;

    #{ my $bsize = 100; my @bins; my $counts = 10000000;
    #  for my $c (1..$counts) { $bins[ $_IRANDF->($bsize-1) ]++; }
    #  for my $b (0..$bsize) {printf("%4d %8.5f%%\n", $b, $bins[$b]/$counts);} }

    # low and high are both odds, and low < high.

    # This is fast for small values, low memory, perfectly uniform, and
    # consumes the minimum amount of randomness needed.  But it isn't feasible
    # with large values.  Also note that low must be a prime.
    if ($high <= 262144 && MPU_USE_XS) {
      my $li     = prime_count(2, $low);
      my $irange = prime_count($low, $high);
      my $rand = urandomm($irange);
      return nth_prime($li + $rand);
    }

    $low-- if $low == 2;  # Low of 2 becomes 1 for our program.
    # Math::BigInt::GMP's RT 71548 will wreak havoc if we don't do this.
    $low = Math::BigInt->new("$low") if ref($high) eq 'Math::BigInt';
    confess "Invalid _random_prime parameters: $low, $high" if ($low % 2) == 0 || ($high % 2) == 0;

    # We're going to look at the odd numbers only.
    my $oddrange = (($high - $low) >> 1) + 1;

    croak "Large random primes not supported on old Perl"
      if OLD_PERL_VERSION && MPU_64BIT && $oddrange > 4294967295;

    # If $low is large (e.g. >10 digits) and $range is small (say ~10k), it
    # would be fastest to call primes in the range and randomly pick one.  I'm
    # not implementing it now because it seems like a rare case.

    # If the range is reasonably small, generate using simple Monte Carlo
    # method (aka the 'trivial' method).  Completely uniform.
    if ($oddrange < MPU_MAXPARAM) {
      my $loop_limit = 2000 * 1000;  # To protect against broken rand
      if ($low > 11) {
        while ($loop_limit-- > 0) {
          $prime = $low + 2 * urandomm($oddrange);
          next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
          return $prime if is_prob_prime($prime);
        }
      } else {
        while ($loop_limit-- > 0) {
          $prime = $low + 2 * urandomm($oddrange);
          next if $prime > 11 && (!($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11));
          return 2 if $prime == 1;  # Remember the special case for 2.
          return $prime if is_prob_prime($prime);
        }
      }
      croak "Random function broken?";
    }

    # We have an ocean of range, and a teaspoon to hold randomness.

    # Since we have an arbitrary range and not a power of two, I don't see how
    # Fouque's algorithm A1 could be used (where we generate lower bits and
    # generate random sets of upper).  Similarly trying to simply generate
    # upper bits is full of ways to trip up and get non-uniform results.
    #
    # What I'm doing here is:
    #
    #   1) divide the range into semi-evenly sized partitions, where each part
    #      is as close to $rand_max_val as we can.
    #   2) randomly select one of the partitions.
    #   3) iterate choosing random values within the partition.
    #
    # The downside is that we're skewing a _lot_ farther from uniformity than
    # we'd like.  Imagine we started at 0 with 1e18 partitions of size 100k
    # each.
    # Probability of '5' being returned =
    #   1.04e-22 = 1e-18 (chose first partition) * 1/9592 (chose '5')
    # Probability of '100003' being returned =
    #   1.19e-22 = 1e-18 (chose second partition) * 1/8392 (chose '100003')
    # Probability of '99999999999999999999977' being returned =
    #   5.20e-22 = 1e-18 (chose last partition)  *  1/1922 (chose '99...77')
    # So the primes in the last partition will show up 5x more often.
    # The partitions are selected uniformly, and the primes within are selected
    # uniformly, but the number of primes in each bucket is _not_ uniform.
    # Their individual probability of being selected is the probability of the
    # partition (uniform) times the probability of being selected inside the
    # partition (uniform with respect to all other primes in the same
    # partition, but each partition is different and skewed).
    #
    # Partitions are typically much larger than 100k, but with a huge range
    # we still see this (e.g. ~3x from 0-10^30, ~10x from 0-10^100).
    #
    # When selecting n-bit or n-digit primes, this effect is MUCH smaller, as
    # the skew becomes approx lg(2^n) / lg(2^(n-1)) which is pretty close to 1.
    #
    #
    # Another idea I'd like to try sometime is:
    #  pclo = prime_count_lower(low);
    #  pchi = prime_count_upper(high);
    #  do {
    #    $nth = random selection between pclo and pchi
    #    $prguess = nth_prime_approx($nth);
    #  } while ($prguess >= low) && ($prguess <= high);
    #  monte carlo select a prime in $prguess-2**24 to $prguess+2**24
    # which accounts for the prime distribution.

    my($binsize, $nparts);
    my $rand_part_size = 1 << (MPU_64BIT ? 32 : 31);
    if (ref($oddrange) eq 'Math::BigInt') {
      # Go to some trouble here because some systems are wonky, such as
      # giving us +a/+b = -r.  Also note the quotes for the bigint argument.
      # Without that, Math::BigInt::GMP can return garbage.
      my($nbins, $rem);
      ($nbins, $rem) = $oddrange->copy->bdiv( "$rand_part_size" );
      $nbins++ if $rem > 0;
      $nbins = $nbins->as_int();
      ($binsize,$rem) = $oddrange->copy->bdiv($nbins);
      $binsize++ if $rem > 0;
      $binsize = $binsize->as_int();
      $nparts  = $oddrange->copy->bdiv($binsize)->as_int();
      $low = $high->copy->bzero->badd($low) if ref($low) ne 'Math::BigInt';
    } else {
      my $nbins = int($oddrange / $rand_part_size);
      $nbins++ if $nbins * $rand_part_size != $oddrange;
      $binsize = int($oddrange / $nbins);
      $binsize++ if $binsize * $nbins != $oddrange;
      $nparts = int($oddrange/$binsize);
    }
    $nparts-- if ($nparts * $binsize) == $oddrange;

    my $rpart = urandomm($nparts+1);

    my $primelow = $low + 2 * $binsize * $rpart;
    my $partsize = ($rpart < $nparts) ? $binsize
                                      : $oddrange - ($nparts * $binsize);
    $partsize = _bigint_to_int($partsize) if ref($partsize) eq 'Math::BigInt';
    #warn "range $oddrange  = $nparts * $binsize + ", $oddrange - ($nparts * $binsize), "\n";
    #warn "  chose part $rpart size $partsize\n";
    #warn "  primelow is $low + 2 * $binsize * $rpart = $primelow\n";
    #die "Result could be too large" if ($primelow + 2*($partsize-1)) > $high;

    # Generate random numbers in the interval until one is prime.
    my $loop_limit = 2000 * 1000;  # To protect against broken rand

    # Simply things for non-bigints.
    if (ref($low) ne 'Math::BigInt') {
      while ($loop_limit-- > 0) {
        my $rand = urandomm($partsize);
        $prime = $primelow + $rand + $rand;
        croak "random prime failure, $prime > $high" if $prime > $high;
        if ($prime <= 23) {
          $prime = 2 if $prime == 1;  # special case for low = 2
          next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
          return $prime;
        }
        next if !($prime % 3) || !($prime % 5) || !($prime % 7) || !($prime % 11);
        # It looks promising.  Check it.
        next unless is_prob_prime($prime);
        return $prime;
      }
      croak "Random function broken?";
    }

    # By checking a wheel 30 mod, we can skip anything that would be a multiple
    # of 2, 3, or 5, without even having to create the bigint prime.
    my @w30 = (1,0,5,4,3,2,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,5,4,3,2,1,0);
    my $primelow30 = $primelow % 30;
    $primelow30 = _bigint_to_int($primelow30) if ref($primelow30) eq 'Math::BigInt';

    # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
    _make_big_gcds() if $_big_gcd_use < 0;

    while ($loop_limit-- > 0) {
      my $rand = urandomm($partsize);
      # Check wheel-30 mod
      my $rand30 = $rand % 30;
      next if $w30[($primelow30 + 2*$rand30) % 30]
              && ($rand > 3 || $primelow > 5);
      # Construct prime
      $prime = $primelow + $rand + $rand;
      croak "random prime failure, $prime > $high" if $prime > $high;
      if ($prime <= 23) {
        $prime = 2 if $prime == 1;  # special case for low = 2
        next unless (0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1)[$prime];
        return $prime;
      }
      # With GMP, the fastest thing to do is check primality.
      if (MPU_USE_GMP) {
        next unless Math::Prime::Util::GMP::is_prime($prime);
        return $prime;
      }
      # No MPU:GMP, so primality checking is slow.  Skip some composites here.
      next unless Math::BigInt::bgcd($prime, 7436429) == 1;
      if ($_big_gcd_use && $prime > $_big_gcd_top) {
        next unless Math::BigInt::bgcd($prime, $_big_gcd[0]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[1]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[2]) == 1;
        next unless Math::BigInt::bgcd($prime, $_big_gcd[3]) == 1;
      }
      # It looks promising.  Check it.
      next unless is_prob_prime($prime);
      return $prime;
    }
    croak "Random function broken?";
};

# Cache of tight bounds for each digit.  Helps performance a lot.
my @_random_ndigit_ranges = (undef, [2,7], [11,97] );
my @_random_nbit_ranges   = (undef, undef, [2,3],[5,7] );
my %_random_cache_small;

# For fixed small ranges with XS, e.g. 6-digit, 18-bit
sub _random_xscount_prime {
  my($low,$high) = @_;
  my($istart, $irange);
  my $cachearef = $_random_cache_small{$low,$high};
  if (defined $cachearef) {
    ($istart, $irange) = @$cachearef;
  } else {
    my $beg = ($low <= 2)  ?  2  :  next_prime($low-1);
    my $end = ($high < ~0)  ?  prev_prime($high + 1)  :  prev_prime($high);
    ($istart, $irange) = ( prime_count(2, $beg), prime_count($beg, $end) );
    $_random_cache_small{$low,$high} = [$istart, $irange];
  }
  my $rand = urandomm($irange);
  return nth_prime($istart + $rand);
}

sub random_prime {
  my($low,$high) = @_;
  return if $high < 2 || $low > $high;

  if ($high-$low > 1000000000) {
    # Range is large, just make them odd if needed.
    $low = 2 if $low < 2;
    $low++ if $low > 2 && ($low % 2) == 0;
    $high-- if ($high % 2) == 0;
  } else {
    # Tighten the range to the nearest prime.
    $low = ($low <= 2)  ?  2  :  next_prime($low-1);
    $high = ($high == ~0) ? prev_prime($high) : prev_prime($high + 1);
    return $low if ($low == $high) && is_prob_prime($low);
    return if $low >= $high;
    # At this point low and high are both primes, and low < high.
  }

  # At this point low and high are both primes, and low < high.
  return $_random_prime->($low, $high);
}

sub random_ndigit_prime {
  my($digits) = @_;
  croak "random_ndigit_prime, digits must be >= 1" unless $digits >= 1;

  return _random_xscount_prime( int(10 ** ($digits-1)), int(10 ** $digits) )
    if $digits <= 6 && MPU_USE_XS;

  my $bigdigits = $digits >= MPU_MAXDIGITS;
  if ($bigdigits && prime_get_config->{'nobigint'}) {
    croak "random_ndigit_prime with -nobigint, digits out of range"
      if $digits > MPU_MAXDIGITS;
    # Special case for nobigint and threshold digits
    if (!defined $_random_ndigit_ranges[$digits]) {
      my $low  = int(10 ** ($digits-1));
      my $high = ~0;
      $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
    }
  }

  if (!defined $_random_ndigit_ranges[$digits]) {
    if ($bigdigits) {
      my $low  = Math::BigInt->new('10')->bpow($digits-1);
      my $high = Math::BigInt->new('10')->bpow($digits);
      # Just pull the range in to the nearest odd.
      $_random_ndigit_ranges[$digits] = [$low+1, $high-1];
    } else {
      my $low  = int(10 ** ($digits-1));
      my $high = int(10 ** $digits);
      # Note: Perl 5.6.2 cannot represent 10**15 as an integer, so things
      # will crash all over the place if you try.  We can stringify it, but
      # will just fail tests later.
      $_random_ndigit_ranges[$digits] = [next_prime($low),prev_prime($high)];
    }
  }
  my ($low, $high) = @{$_random_ndigit_ranges[$digits]};
  return $_random_prime->($low, $high);
}

my @_random_nbit_m;
my @_random_nbit_lambda;
my @_random_nbit_arange;

sub random_nbit_prime {
  my($bits) = @_;
  croak "random_nbit_prime, bits must be >= 2" unless $bits >= 2;
  $bits = int("$bits");

  # Very small size, use the nth-prime method
  if ($bits <= 20 && MPU_USE_XS) {
    if ($bits <= 4) {
      return (2,3)[urandomb(1)] if $bits == 2;
      return (5,7)[urandomb(1)] if $bits == 3;
      return (11,13)[urandomb(1)] if $bits == 4;
    }
    return _random_xscount_prime( 1 << ($bits-1), 1 << $bits );
  }

  croak "Mid-size random primes not supported on broken old Perl"
    if OLD_PERL_VERSION && MPU_64BIT && $bits > 49 && $bits <= 64;

  # Fouque and Tibouchi (2011) Algorithm 1 (basic)
  # Modified to make sure the nth bit is always set.
  #
  # Example for random_nbit_prime(512) on 64-bit Perl:
  # p:  1aaaaaaaabbbbbbbbbbbbbbbbbbbb1
  #     ^^       ^                   ^--- Trailing 1 so p is odd
  #     ||       +--- 512-63-2 = 447 lower bits selected before loop
  #     |+--- 63 upper bits selected in loop, repeated until p is prime
  #     +--- upper bit is 1 so we generate an n-bit prime
  # total: 1 + 63 + 447 + 1 = 512 bits
  #
  # Algorithm 2 is implemented in a previous commit on github.  The problem
  # is that it doesn't set the nth bit, and making that change requires a
  # modification of the algorithm.  It was not a lot faster than this A1
  # with the native int trial division.  If the irandf function was very
  # slow, then A2 would look more promising.
  #
  if (1 && $bits > 64) {
    my $l = (MPU_64BIT && $bits > 79)  ?  63  :  31;
    $l = 49 if $l == 63 && OLD_PERL_VERSION;  # Fix for broken Perl 5.6
    $l = $bits-2 if $bits-2 < $l;

    my $brand = urandomb($bits-$l-2);
    $brand = Math::BigInt->new("$brand") unless ref($brand) eq 'Math::BigInt';
    my $b = $brand->blsft(1)->binc();

    # Precalculate some modulii so we can do trial division on native int
    # 9699690 = 2*3*5*7*11*13*17*19, so later operations can be native ints
    my @premod;
    my $bpremod = _bigint_to_int($b->copy->bmod(9699690));
    my $twopremod = _bigint_to_int(Math::BigInt->new(2)->bmodpow($bits-$l-1, 9699690));
    foreach my $zi (0 .. 19-1) {
      foreach my $pm (3, 5, 7, 11, 13, 17, 19) {
        next if $zi >= $pm || defined $premod[$pm];
        $premod[$pm] = $zi if ( ($twopremod*$zi+$bpremod) % $pm) == 0;
      }
    }
    _make_big_gcds() if $_big_gcd_use < 0;
    if (!MPU_USE_GMP) { require Math::Prime::Util::PP; }

    my $loop_limit = 1_000_000;
    while ($loop_limit-- > 0) {
      my $a = (1 << $l) + urandomb($l);
      # $a % s == $premod[s]  =>  $p % s == 0  =>  p will be composite
      next if $a %  3 == $premod[ 3] || $a %  5 == $premod[ 5]
           || $a %  7 == $premod[ 7] || $a % 11 == $premod[11]
           || $a % 13 == $premod[13] || $a % 17 == $premod[17]
           || $a % 19 == $premod[19];
      my $p = Math::BigInt->new("$a")->blsft($bits-$l-1)->badd($b);
      #die " $a $b $p" if $a % 11 == $premod[11] && $p % 11 != 0;
      #die "!$a $b $p" if $a % 11 != $premod[11] && $p % 11 == 0;
      if (MPU_USE_GMP) {
        next unless Math::Prime::Util::GMP::is_prime($p);
      } else {
        next unless Math::BigInt::bgcd($p, 1348781387) == 1; # 23-43
        if ($_big_gcd_use && $p > $_big_gcd_top) {
          next unless Math::BigInt::bgcd($p, $_big_gcd[0]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[1]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[2]) == 1;
          next unless Math::BigInt::bgcd($p, $_big_gcd[3]) == 1;
        }
        # We know we don't have GMP and are > 2^64, so go directly to this.
        next unless Math::Prime::Util::PP::is_bpsw_prime($p);
      }
      return $p;
    }
    croak "Random function broken?";
  }

  # The Trivial method.  Great uniformity, and fine for small sizes.  It
  # gets very slow as the bit size increases, but that is why we have the
  # method above for bigints.
  if (1) {

    my $loop_limit = 2_000_000;
    if ($bits > MPU_MAXBITS) {
      my $p = Math::BigInt->bone->blsft($bits-1)->binc();
      while ($loop_limit-- > 0) {
        my $n = Math::BigInt->new(''.urandomb($bits-2))->blsft(1)->badd($p);
        return $n if is_prob_prime($n);
      }
    } else {
      my $p = (1 << ($bits-1)) + 1;
      while ($loop_limit-- > 0) {
        my $n = $p + (urandomb($bits-2) << 1);
        return $n if is_prob_prime($n);
      }
    }
    croak "Random function broken?";

  } else {

    # Send through the generic random_prime function.  Decently fast, but
    # quite a bit slower than the F&T A1 method above.
    if (!defined $_random_nbit_ranges[$bits]) {
      if ($bits > MPU_MAXBITS) {
        my $low  = Math::BigInt->new('2')->bpow($bits-1);
        my $high = Math::BigInt->new('2')->bpow($bits);
        # Don't pull the range in to primes, just odds
        $_random_nbit_ranges[$bits] = [$low+1, $high-1];
      } else {
        my $low  = 1 << ($bits-1);
        my $high = ($bits == MPU_MAXBITS)
                   ? ~0-1
                   : ~0 >> (MPU_MAXBITS - $bits);
        $_random_nbit_ranges[$bits] = [next_prime($low-1),prev_prime($high+1)];
        # Example: bits = 7.
        #    low = 1<<6 = 64.            next_prime(64-1)  = 67
        #    high = ~0 >> (64-7) = 127.  prev_prime(127+1) = 127
      }
    }
    my ($low, $high) = @{$_random_nbit_ranges[$bits]};
    return $_random_prime->($low, $high);

  }
}


# For stripping off the header on certificates so they can be combined.
sub _strip_proof_header {
  my $proof = shift;
  $proof =~ s/^\[MPU - Primality Certificate\]\nVersion \S+\n+Proof for:\nN (\d+)\n+//ms;
  return $proof;
}


sub random_maurer_prime {
  my $k = shift;
  croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
  $k = int("$k");

  return random_nbit_prime($k)  if $k <= MPU_MAXBITS && !OLD_PERL_VERSION;

  my ($n, $cert) = random_maurer_prime_with_cert($k);
  croak "maurer prime $n failed certificate verification!"
        unless verify_prime($cert);
  return $n;
}

sub random_maurer_prime_with_cert {
  my $k = shift;
  croak "random_maurer_prime, bits must be >= 2" unless $k >= 2;
  $k = int("$k");

  # This should never happen.  Trap now to prevent infinite loop.
  croak "number of bits must not be a bigint" if ref($k) eq 'Math::BigInt';

  # Results for random_nbit_prime are proven for all native bit sizes.
  my $p0 = MPU_MAXBITS;
  $p0 = 49 if OLD_PERL_VERSION && MPU_MAXBITS > 49;

  if ($k <= $p0) {
    my $n = random_nbit_prime($k);
    my ($isp, $cert) = is_provable_prime_with_cert($n);
    croak "small nbit prime could not be proven" if $isp != 2;
    return ($n, $cert);
  }

  # Set verbose to 3 to get pretty output like Crypt::Primes
  my $verbose = prime_get_config->{'verbose'};
  local $| = 1 if $verbose > 2;

  do { require Math::BigFloat; Math::BigFloat->import(); }
    if !defined $Math::BigFloat::VERSION;

  # Ignore Maurer's g and c that controls how much trial division is done.
  my $r = Math::BigFloat->new("0.5");   # relative size of the prime q
  my $m = 20;                           # makes sure R is big enough

  # Generate a random prime q of size $r*$k, where $r >= 0.5.  Try to
  # cleverly select r to match the size of a typical random factor.
  if ($k > 2*$m) {
    do {
      my $s = Math::Prime::Util::drand();
      $r = Math::BigFloat->new(2)->bpow($s-1);
    } while ($k*$r >= $k-$m);
  }

  # I've seen +0, +1, and +2 here.  Maurer uses +0.  Menezes uses +1.
  # We can use +1 because we're using BLS75 theorem 3 later.
  my $smallk = int(($r * $k)->bfloor->bstr) + 1;
  my ($q, $qcert) = random_maurer_prime_with_cert($smallk);
  $q = Math::BigInt->new("$q") unless ref($q) eq 'Math::BigInt';
  my $I = Math::BigInt->new(2)->bpow($k-2)->bdiv($q)->bfloor->as_int();
  print "r = $r  k = $k  q = $q  I = $I\n" if $verbose && $verbose != 3;
  $qcert = ($q < Math::BigInt->new("18446744073709551615"))
           ? "" : _strip_proof_header($qcert);

  # Big GCD's are hugely fast with GMP or Pari, but super slow with Calc.
  _make_big_gcds() if $_big_gcd_use < 0;
  my $ONE = Math::BigInt->bone;
  my $TWO = $ONE->copy->binc;

  my $loop_limit = 1_000_000 + $k * 1_000;
  while ($loop_limit-- > 0) {
    # R is a random number between $I+1 and 2*$I
    #my $R = $I + 1 + urandomm( $I );
    my $R = $I->copy->binc->badd( urandomm($I) );
    #my $n = 2 * $R * $q + 1;
    my $nm1 = $TWO->copy->bmul($R)->bmul($q);
    my $n = $nm1->copy->binc;
    # We constructed a promising looking $n.  Now test it.
    print "." if $verbose > 2;
    if (MPU_USE_GMP) {
      # MPU::GMP::is_prob_prime has fast tests built in.
      next unless Math::Prime::Util::GMP::is_prob_prime($n);
    } else {
      # No GMP, so first do trial divisions, then a SPSP test.
      next unless Math::BigInt::bgcd($n, 111546435)->is_one;
      if ($_big_gcd_use && $n > $_big_gcd_top) {
        next unless Math::BigInt::bgcd($n, $_big_gcd[0])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[1])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[2])->is_one;
        next unless Math::BigInt::bgcd($n, $_big_gcd[3])->is_one;
      }
      print "+" if $verbose > 2;
      next unless is_strong_pseudoprime($n, 3);
    }
    print "*" if $verbose > 2;

    # We could pick a random generator by doing:
    #   Step 1: pick a random r
    #   Step 2: compute g = r^((n-1)/q) mod p
    #   Step 3: if g == 1, goto Step 1.
    # Note that n = 2*R*q+1, hence the exponent is 2*R.

    # We could set r = 0.3333 earlier, then use BLS75 theorem 5 here.
    # The chain would be shorter, requiring less overall work for
    # large inputs.  Maurer's paper discusses the idea.

    # Use BLS75 theorem 3.  This is easier and possibly faster than
    # BLS75 theorem 4 (Pocklington) used by Maurer's paper.

    # Check conditions -- these should be redundant.
    my $m = $TWO * $R;
    if (! ($q->is_odd && $q > 2 && $m > 0 &&
           $m * $q + $ONE == $n && $TWO*$q+$ONE > $n->copy->bsqrt()) ) {
      carp "Maurer prime failed BLS75 theorem 3 conditions.  Retry.";
      next;
    }
    # Find a suitable a.  Move on if one isn't found quickly.
    foreach my $trya (2, 3, 5, 7, 11, 13) {
      my $a = Math::BigInt->new($trya);
      # m/2 = R    (n-1)/2 = (2*R*q)/2 = R*q
      next unless $a->copy->bmodpow($R, $n) != $nm1;
      next unless $a->copy->bmodpow($R*$q, $n) == $nm1;
      print "($k)" if $verbose > 2;
      croak "Maurer prime $n=2*$R*$q+1 failed BPSW" unless is_prob_prime($n);
      my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
                 "Proof for:\nN $n\n\n" .
                 "Type BLS3\nN $n\nQ $q\nA $a\n" .
                 $qcert;
      return ($n, $cert);
    }
    # Didn't pass the selected a values.  Try another R.
  }
  croak "Failure in random_maurer_prime, could not find a prime\n";
} # End of random_maurer_prime


sub random_shawe_taylor_prime_with_cert {
  my $k = shift;

  my $seed = random_bytes(512/8);

  my($status,$prime,$prime_seed,$prime_gen_counter,$cert)
     = _ST_Random_prime($k, $seed);
  croak "Shawe-Taylor random prime failure" unless $status;
  croak "Shawe-Taylor random prime failure: prime $prime failed certificate verification!" unless verify_prime($cert);

  return ($prime,$cert);
}

sub _seed_plus_one {
    my($s) = @_;
    for (my $i = length($s)-1; $i >= 0; $i--) {
        vec($s, $i, 8)++;
        last unless vec($s, $i, 8) == 0;
    }
    return $s;
}

sub _ST_Random_prime {  # From FIPS 186-4
  my($k, $input_seed) = @_;
  croak "Shawe-Taylor random prime must have length >= 2"  if $k < 2;
  $k = int("$k");

  croak "Shawe-Taylor random prime, invalid input seed"
     unless defined $input_seed && length($input_seed) >= 32;

  if (!defined $Digest::SHA::VERSION) {
    eval { require Digest::SHA;
           my $version = $Digest::SHA::VERSION;
           $version =~ s/[^\d.]//g;
           $version >= 4.00; }
      or do { croak "Must have Digest::SHA 4.00 or later"; };
  }

  my $k2 = Math::BigInt->new(2)->bpow($k-1);

  if ($k < 33) {
    my $seed = $input_seed;
    my $prime_gen_counter = 0;
    my $kmask    = 0xFFFFFFFF >> (32-$k);    # Does the mod operation
    my $kstencil = (1 << ($k-1)) | 1;        # Sets high and low bits
    while (1) {
      my $seedp1 = _seed_plus_one($seed);
      my $cvec = Digest::SHA::sha256($seed) ^ Digest::SHA::sha256($seedp1);
      # my $c = Math::BigInt->from_hex('0x' . unpack("H*", $cvec));
      # $c = $k2 + ($c % $k2);
      # $c = (2 * ($c >> 1)) + 1;
      my($c) = unpack("N*", substr($cvec,-4,4));
      $c = ($c & $kmask) | $kstencil;
      $prime_gen_counter++;
      $seed = _seed_plus_one($seedp1);
      my ($isp, $cert) = is_provable_prime_with_cert($c);
      return (1,$c,$seed,$prime_gen_counter,$cert) if $isp;
      return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k;
    }
  }
  my($status,$c0,$seed,$prime_gen_counter,$cert)
     = _ST_Random_prime( (($k+1)>>1)+1, $input_seed);
  return (0,0,0,0) unless $status;
  $cert = ($c0 < Math::BigInt->new("18446744073709551615"))
          ? "" : _strip_proof_header($cert);
  my $iterations = int(($k + 255) / 256) - 1;  # SHA256 generates 256 bits
  my $old_counter = $prime_gen_counter;
  my $xstr = '';
  for my $i (0 .. $iterations) {
    $xstr = Digest::SHA::sha256_hex($seed) . $xstr;
    $seed = _seed_plus_one($seed);
  }
  my $x = Math::BigInt->from_hex('0x'.$xstr);
  $x = $k2 + ($x % $k2);
  my $t = ($x + 2*$c0 - 1) / (2*$c0);
  _make_big_gcds() if $_big_gcd_use < 0;
  while (1) {
    if (2*$t*$c0 + 1 > 2*$k2) { $t = ($k2 + 2*$c0 - 1) / (2*$c0); }
    my $c = 2*$t*$c0 + 1;
    $prime_gen_counter++;

    # Don't do the Pocklington check unless the candidate looks prime
    my $looks_prime = 0;
    if (MPU_USE_GMP) {
      # MPU::GMP::is_prob_prime has fast tests built in.
      $looks_prime = Math::Prime::Util::GMP::is_prob_prime($c);
    } else {
      # No GMP, so first do trial divisions, then a SPSP test.
      $looks_prime = Math::BigInt::bgcd($c, 111546435)->is_one;
      if ($looks_prime && $_big_gcd_use && $c > $_big_gcd_top) {
        $looks_prime = Math::BigInt::bgcd($c, $_big_gcd[0])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[1])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[2])->is_one &&
                       Math::BigInt::bgcd($c, $_big_gcd[3])->is_one;
      }
      $looks_prime = 0 if $looks_prime && !is_strong_pseudoprime($c, 3);
    }

    if ($looks_prime) {
      # We could use a in (2,3,5,7,11,13), but pedantically use FIPS 186-4.
      my $astr = '';
      for my $i (0 .. $iterations) {
        $astr = Digest::SHA::sha256_hex($seed) . $astr;
        $seed = _seed_plus_one($seed);
      }
      my $a = Math::BigInt->from_hex('0x'.$astr);
      $a = ($a % ($c-3)) + 2;
      my $z = $a->copy->bmodpow(2*$t,$c);
      if (Math::BigInt::bgcd($z-1,$c)->is_one && $z->copy->bmodpow($c0,$c)->is_one) {
        croak "Shawe-Taylor random prime failure at ($k): $c not prime"
          unless is_prob_prime($c);
        $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\n" .
                 "Proof for:\nN $c\n\n" .
                 "Type Pocklington\nN $c\nQ $c0\nA $a\n" .
                 $cert;
        return (1, $c, $seed, $prime_gen_counter, $cert);
      }
    } else {
      # Update seed "as if" we performed the Pocklington check from FIPS 186-4
      for my $i (0 .. $iterations) {
        $seed = _seed_plus_one($seed);
      }
    }
    return (0,0,0,0) if $prime_gen_counter > 10000 + 16*$k + $old_counter;
    $t++;
  }
}


# Gordon's algorithm for generating a strong prime.
sub random_strong_prime {
  my $t = shift;
  croak "random_strong_prime, bits must be >= 128" unless $t >= 128;
  $t = int("$t");

  croak "Random strong primes must be >= 173 bits on old Perl"
    if OLD_PERL_VERSION && MPU_64BIT && $t < 173;

  my $l   = (($t+1) >> 1) - 2;
  my $lp  = int($t/2) - 20;
  my $lpp = $l - 20;
  while (1) {
    my $qp  = random_nbit_prime($lp);
    my $qpp = random_nbit_prime($lpp);
    $qp  = Math::BigInt->new("$qp")  unless ref($qp)  eq 'Math::BigInt';
    $qpp = Math::BigInt->new("$qpp") unless ref($qpp) eq 'Math::BigInt';
    my ($il, $rem) = Math::BigInt->new(2)->bpow($l-1)->bdec()->bdiv(2*$qpp);
    $il++ if $rem > 0;
    $il = $il->as_int();
    my $iu = Math::BigInt->new(2)->bpow($l)->bsub(2)->bdiv(2*$qpp)->as_int();
    my $istart = $il + urandomm($iu - $il + 1);
    for (my $i = $istart; $i <= $iu; $i++) {  # Search for q
      my $q = 2 * $i * $qpp + 1;
      next unless is_prob_prime($q);
      my $pp = $qp->copy->bmodpow($q-2, $q)->bmul(2)->bmul($qp)->bdec();
      my ($jl, $rem) = Math::BigInt->new(2)->bpow($t-1)->bsub($pp)->bdiv(2*$q*$qp);
      $jl++ if $rem > 0;
      $jl = $jl->as_int();
      my $ju = Math::BigInt->new(2)->bpow($t)->bdec()->bsub($pp)->bdiv(2*$q*$qp)->as_int();
      my $jstart = $jl + urandomm($ju - $jl + 1);
      for (my $j = $jstart; $j <= $ju; $j++) {  # Search for p
        my $p = $pp + 2 * $j * $q * $qp;
        return $p if is_prob_prime($p);
      }
    }
  }
}

sub random_proven_prime {
  my $k = shift;
  my ($n, $cert) = random_proven_prime_with_cert($k);
  croak "random_proven_prime $n failed certificate verification!"
        unless verify_prime($cert);
  return $n;
}

sub random_proven_prime_with_cert {
  my $k = shift;

  if (prime_get_config->{'gmp'} && $k <= 450) {
    my $n = random_nbit_prime($k);
    my ($isp, $cert) = is_provable_prime_with_cert($n);
    croak "small nbit prime could not be proven" if $isp != 2;
    return ($n, $cert);
  }
  return random_maurer_prime_with_cert($k);
}

1;

__END__


# ABSTRACT:  Generate random primes

=pod

=encoding utf8

=head1 NAME

Math::Prime::Util::RandomPrimes - Generate random primes


=head1 VERSION

Version 0.73


=head1 SYNOPSIS

=head1 DESCRIPTION

Routines to generate random primes, including constructing proven primes.


=head1 RANDOM PRIME FUNCTIONS

=head2 random_prime

Generate a random prime between C<low> and C<high>.  If given one argument,
C<low> will be 2.

=head2 random_ndigit_prime

Generate a random prime with C<n> digits.  C<n> must be at least 1.

=head2 random_nbit_prime

Generate a random prime with C<n> bits.  C<n> must be at least 2.

=head2 random_maurer_prime

Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm.  C<n> must be at least 2.

=head2 random_maurer_prime_with_cert

Construct a random provable prime of C<n> bits using Maurer's FastPrime
algorithm.  C<n> must be at least 2.  Returns a list of two items: the
prime and the certificate.

=head2 random_shawe_taylor_prime

Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm.  C<n> must be at least 2.  The implementation is from
FIPS 186-4 and uses SHA-256 with 512 bits of randomness.

=head2 random_shawe_taylor_prime_with_cert

Construct a random provable prime of C<n> bits using Shawe-Taylor's
algorithm.  C<n> must be at least 2.  Returns a list of two items: the
prime and the certificate.

=head2 random_strong_prime

Construct a random strong prime of C<n> bits.  C<n> must be at least 128.

=head2 random_proven_prime

Generate or construct a random provable prime of C<n> bits.  C<n> must
be at least 2.

=head2 random_proven_prime_with_cert

Generate or construct a random provable prime of C<n> bits.  C<n> must
be at least 2.  Returns a list of two items: the prime and the certificate.


=head1 SEE ALSO

L<Math::Prime::Util>

=head1 AUTHORS

Dana Jacobsen E<lt>dana@acm.orgE<gt>


=head1 COPYRIGHT

Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

=cut

Youez - 2016 - github.com/yon3zu
LinuXploit