���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/xampp/perl/vendor/lib/Math/Prime/Util/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/xampp/perl/vendor/lib/Math/Prime/Util/PrimalityProving.pm
package Math::Prime::Util::PrimalityProving;
use strict;
use warnings;
use Carp qw/carp croak confess/;
use Math::Prime::Util qw/is_prob_prime is_strong_pseudoprime
                         is_provable_prime_with_cert
                         lucas_sequence
                         factor
                         prime_get_config
                        /;

BEGIN {
  $Math::Prime::Util::PrimalityProving::AUTHORITY = 'cpan:DANAJ';
  $Math::Prime::Util::PrimalityProving::VERSION = '0.73';
}

BEGIN {
  do { require Math::BigInt;  Math::BigInt->import(try=>"GMP,Pari"); }
    unless defined $Math::BigInt::VERSION;
}

my $_smallval = Math::BigInt->new("18446744073709551615");
my $_maxint = Math::BigInt->new( (~0 > 4294967296 && $] < 5.008) ? "562949953421312" : ''.~0 );


###############################################################################
# Pure Perl proofs
###############################################################################

my @_fsublist = (
  sub { Math::Prime::Util::PP::pbrent_factor (shift,   32*1024, 1) },
  sub { Math::Prime::Util::PP::pminus1_factor(shift, 1_000_000) },
  sub { Math::Prime::Util::PP::ecm_factor    (shift,     1_000,   5_000, 15) },
  sub { Math::Prime::Util::PP::pbrent_factor (shift,  512*1024, 7) },
  sub { Math::Prime::Util::PP::pminus1_factor(shift, 4_000_000) },
  sub { Math::Prime::Util::PP::ecm_factor    (shift,    10_000,  50_000, 10) },
  sub { Math::Prime::Util::PP::pbrent_factor (shift,  512*1024, 11) },
  sub { Math::Prime::Util::PP::pminus1_factor(shift,20_000_000) },
  sub { Math::Prime::Util::PP::ecm_factor    (shift,   100_000, 800_000, 10) },
  sub { Math::Prime::Util::PP::pbrent_factor (shift, 2048*1024, 13) },
  sub { Math::Prime::Util::PP::ecm_factor    (shift, 1_000_000, 1_000_000, 20)},
  sub { Math::Prime::Util::PP::pminus1_factor(shift, 100_000_000, 500_000_000)},
);

sub _small_cert {
  my $n = shift;
  return '' unless is_prob_prime($n);
  return join "\n", "[MPU - Primality Certificate]",
                    "Version 1.0",
                    "",
                    "Proof for:",
                    "N $n",
                    "",
                    "Type Small",
                    "N $n",
                    "";
}

# For stripping off the header on certificates so they can be combined.
sub _strip_proof_header {
  my $proof = shift;
  $proof =~ s/^\[MPU - Primality Certificate\]\nVersion \S+\n+Proof for:\nN (\d+)\n+//ms;
  return $proof;
}


sub primality_proof_lucas {
  my ($n) = shift;
  my @composite = (0, '');

  # Since this can take a very long time with a composite, try some easy cuts
  return @composite if !defined $n || $n < 2;
  return (2, _small_cert($n)) if $n < 4;
  return @composite if is_strong_pseudoprime($n,2,15,325) == 0;

  my $nm1 = $n-1;
  my @factors = factor($nm1);
  { # remove duplicate factors and make a sorted array of bigints
    my %uf;
    undef @uf{@factors};
    @factors = sort {$a<=>$b} map { Math::BigInt->new("$_") } keys %uf;
  }
  my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\nProof for:\nN $n\n\n";
  $cert .= "Type Lucas\nN $n\n";
  foreach my $i (1 .. scalar @factors) {
    $cert .= "Q[$i] " . $factors[$i-1] . "\n";
  }
  for (my $a = 2; $a < $nm1; $a++) {
    my $ap = Math::BigInt->new("$a");
    # 1. a must be coprime to n
    next unless Math::BigInt::bgcd($ap, $n) == 1;
    # 2. a^(n-1) = 1 mod n.
    next unless $ap->copy->bmodpow($nm1, $n) == 1;
    # 3. a^((n-1)/f) != 1 mod n for all f.
    next if (scalar grep { $_ == 1 }
             map { $ap->copy->bmodpow(int($nm1/$_),$n); }
             @factors) > 0;
    # Verify each factor and add to proof
    my @fac_proofs;
    foreach my $f (@factors) {
      my ($isp, $fproof) = Math::Prime::Util::is_provable_prime_with_cert($f);
      if ($isp != 2) {
        carp "could not prove primality of $n.\n";
        return (1, '');
      }
      push @fac_proofs, _strip_proof_header($fproof) if $f > $_smallval;
    }
    $cert .= "A $a\n";
    foreach my $proof (@fac_proofs) {
      $cert .= "\n$proof";
    }
    return (2, $cert);
  }
  return @composite;
}

sub primality_proof_bls75 {
  my ($n) = shift;
  my @composite = (0, '');

  # Since this can take a very long time with a composite, try some easy tests
  return @composite if !defined $n || $n < 2;
  return (2, _small_cert($n)) if $n < 4;
  return @composite if ($n & 1) == 0;
  return @composite if is_strong_pseudoprime($n,2,15,325) == 0;

  require Math::Prime::Util::PP;
  $n = Math::BigInt->new("$n") unless ref($n) eq 'Math::BigInt';
  my $nm1 = $n->copy->bdec;
  my $ONE = $nm1->copy->bone;
  my $TWO = $ONE->copy->binc;
  my $A = $ONE->copy;         # factored part
  my $B = $nm1->copy;         # unfactored part
  my @factors = ($TWO);
  croak "BLS75 error: n-1 not even" unless $nm1->is_even();
  {
    while ($B->is_even) { $B->bdiv($TWO); $A->bmul($TWO); }
    my @tf;
    if ($B <= $_maxint && prime_get_config->{'xs'}) {
      @tf = Math::Prime::Util::trial_factor("$B", 20000);
      pop @tf if $tf[-1] > 20000;
    } else {
      @tf = Math::Prime::Util::PP::trial_factor($B, 5000);
      pop @tf if $tf[-1] > 5000;
    }
    foreach my $f (@tf) {
      next if $f == $factors[-1];
      push @factors, $f;
      while (($B % $f) == 0) { $B /= $f;  $A *= $f; }
    }
  }
  my @nstack;
  # nstack should only hold composites
  if ($B->is_one) {
    # Completely factored.  Nothing.
  } elsif (is_prob_prime($B)) {
    push @factors, $B;
    $A *= $B;  $B /= $B;   # completely factored already
  } else {
    push @nstack, $B;
  }
  while (@nstack) {
    my ($s,$r) = $B->copy->bdiv($A->copy->bmul($TWO));
    my $fpart = ($A+$ONE) * ($TWO*$A*$A + ($r-$ONE) * $A + $ONE);
    last if $n < $fpart;

    my $m = pop @nstack;
    # Don't use bignum if it has gotten small enough.
    $m = int($m->bstr) if ref($m) eq 'Math::BigInt' && $m <= $_maxint;
    # Try to find factors of m, using the default set of factor subs.
    my @ftry;
    foreach my $sub (@_fsublist) {
      @ftry = $sub->($m);
      last if scalar @ftry >= 2;
    }
    # If we couldn't find a factor, skip it.
    next unless scalar @ftry > 1;
    # Process each factor
    foreach my $f (@ftry) {
      croak "Invalid factoring: B=$B m=$m f=$f" if $f == 1 || $f == $m || !$B->copy->bmod($f)->is_zero;
      if (is_prob_prime($f)) {
        push @factors, $f;
        do { $B /= $f;  $A *= $f; } while $B->copy->bmod($f)->is_zero;
      } else {
        push @nstack, $f;
      }
    }
  }
  { # remove duplicate factors and make a sorted array of bigints
    my %uf = map { $_ => 1 } @factors;
    @factors = sort {$a<=>$b} map { Math::BigInt->new("$_") } keys %uf;
  }
  # Just in case:
  foreach my $f (@factors) {
    while ($B->copy->bmod($f)->is_zero) {
      $B /= $f;  $A *= $f;
    }
  }
  # Did we factor enough?
  my ($s,$r) = $B->copy->bdiv($A->copy->bmul($TWO));
  my $fpart = ($A+$ONE) * ($TWO*$A*$A + ($r-$ONE) * $A + $ONE);
  return (1,'') if $n >= $fpart;
  # Check we didn't mess up
  croak "BLS75 error: $A * $B != $nm1" unless $A*$B == $nm1;
  croak "BLS75 error: $A not even" unless $A->is_even();
  croak "BLS75 error: A and B not coprime" unless Math::BigInt::bgcd($A, $B)->is_one;

  my $rtest = $r*$r - 8*$s;
  my $rtestroot = $rtest->copy->bsqrt;
  return @composite if $s != 0 && ($rtestroot*$rtestroot) == $rtest;

  my $cert = "[MPU - Primality Certificate]\nVersion 1.0\n\nProof for:\nN $n\n\n";
  $cert .= "Type BLS5\nN $n\n";
  my $qnum = 0;
  my $atext = '';
  my @fac_proofs;
  foreach my $f (@factors) {
    my $success = 0;
    if ($qnum == 0) {
      die "BLS5 Perl proof: Internal error, first factor not 2" unless $f == 2;
    } else {
      $cert .= "Q[$qnum] $f\n";
    }
    my $nm1_div_f = $nm1 / $f;
    foreach my $a (2 .. 10000) {
      my $ap = Math::BigInt->new($a);
      next unless $ap->copy->bmodpow($nm1, $n)->is_one;
      next unless Math::BigInt::bgcd($ap->copy->bmodpow($nm1_div_f, $n)->bdec, $n)->is_one;
      $atext .= "A[$qnum] $a\n" unless $a == 2;
      $success = 1;
      last;
    }
    $qnum++;
    return @composite unless $success;
    my ($isp, $fproof) = is_provable_prime_with_cert($f);
    if ($isp != 2) {
      carp "could not prove primality of $n.\n";
      return (1, '');
    }
    push @fac_proofs, _strip_proof_header($fproof) if $f > $_smallval;
  }
  $cert .= $atext;
  $cert .= "----\n";
  foreach my $proof (@fac_proofs) {
    $cert .= "\n$proof";
  }
  return (2, $cert);
}

###############################################################################
# Convert certificates from old array format to new string format
###############################################################################

sub _convert_cert {
  my $pdata = shift;   # pdata is a ref

  return '' if scalar @$pdata == 0;
  my $n = shift @$pdata;
  if (length($n) == 1) {
    return "Type Small\nN $n\n" if $n =~ /^[2357]$/;
    return '';
  }
  $n = Math::BigInt->new("$n") if ref($n) ne 'Math::BigInt';
  return '' if $n->is_even;

  my $method = (scalar @$pdata > 0) ? shift @$pdata : 'BPSW';

  if ($method eq 'BPSW') {
    return '' if $n > $_smallval;
    return '' if is_prob_prime($n) != 2;
    return "Type Small\nN $n\n";
  }

  if ($method eq 'Pratt' || $method eq 'Lucas') {
    if (scalar @$pdata != 2 || ref($$pdata[0]) ne 'ARRAY' || ref($$pdata[1]) eq 'ARRAY') {
      carp "verify_prime: incorrect Pratt format, must have factors and a value\n";
      return '';
    }
    my @factors = @{shift @$pdata};
    my $a = shift @$pdata;
    my $cert = "Type Lucas\nN     $n\n";
    foreach my $i (0 .. $#factors) {
      my $f = (ref($factors[$i]) eq 'ARRAY') ? $factors[$i]->[0] : $factors[$i];
      $cert .= sprintf("Q[%d]  %s\n", $i+1, $f);
    }
    $cert .= "A     $a\n\n";

    foreach my $farray (@factors) {
      if (ref($farray) eq 'ARRAY') {
        $cert .= _convert_cert($farray);
      }
    }
    return $cert;
  }
  if ($method eq 'n-1') {
    if (scalar @$pdata == 3 && ref($$pdata[0]) eq 'ARRAY' && $$pdata[0]->[0] =~ /^(B|T7|Theorem\s*7)$/i) {
      croak "Unsupported BLS7 proof in conversion";
    }
    if (scalar @$pdata != 2 || ref($$pdata[0]) ne 'ARRAY' || ref($$pdata[1]) ne 'ARRAY') {
      carp "verify_prime: incorrect n-1 format, must have factors and a values\n";
      return '';
    }
    my @factors = @{shift @$pdata};
    my @as = @{shift @$pdata};
    if (scalar @factors != scalar @as) {
      carp "verify_prime: incorrect n-1 format, must have a value for each factor\n";
      return '';
    }
    # Make sure 2 is at the top
    foreach my $i (1 .. $#factors) {
      my $f = (ref($factors[$i]) eq 'ARRAY') ? $factors[$i]->[0] : $factors[$i];
      if ($f == 2) {
        my $tf = $factors[0];  $factors[0] = $factors[$i];  $factors[$i] = $tf;
        my $ta = $as[0];  $as[0] = $as[$i];  $as[$i] = $ta;
      }
    }
    return '' unless $factors[0] == 2;
    my $cert = "Type BLS5\nN     $n\n";
    foreach my $i (1 .. $#factors) {
      my $f = (ref($factors[$i]) eq 'ARRAY') ? $factors[$i]->[0] : $factors[$i];
      $cert .= sprintf("Q[%d]  %s\n", $i, $f);
    }
    foreach my $i (0 .. $#as) {
      $cert .= sprintf("A[%d]  %s\n", $i, $as[$i]) if $as[$i] != 2;
    }
    $cert .= "----\n\n";
    foreach my $farray (@factors) {
      if (ref($farray) eq 'ARRAY') {
        $cert .= _convert_cert($farray);
      }
    }
    return $cert;
  }
  if ($method eq 'ECPP' || $method eq 'AGKM') {
    if (scalar @$pdata < 1) {
      carp "verify_prime: incorrect AGKM format\n";
      return '';
    }
    my $cert = '';
    my $q = $n;
    foreach my $block (@$pdata) {
      if (ref($block) ne 'ARRAY' || scalar @$block != 6) {
        carp "verify_prime: incorrect AGKM block format\n";
        return '';
      }
      my($ni, $a, $b, $m, $qval, $P) = @$block;
      if (Math::BigInt->new("$ni") != Math::BigInt->new("$q")) {
        carp "verify_prime: incorrect AGKM block format: block n != q\n";
        return '';
      }
      $q = ref($qval) eq 'ARRAY' ? $qval->[0] : $qval;
      if (ref($P) ne 'ARRAY' || scalar @$P != 2) {
        carp "verify_prime: incorrect AGKM block point format\n";
        return '';
      }
      my ($x, $y) = @{$P};
      $cert .= "Type ECPP\nN $ni\nA $a\nB $b\nM $m\nQ $q\nX $x\nY $y\n\n";
      if (ref($qval) eq 'ARRAY') {
        $cert .= _convert_cert($qval);
      }
    }
    return $cert;
  }
  carp "verify_prime: Unknown method: '$method'.\n";
  return '';
}


sub convert_array_cert_to_string {
  my @pdata = @_;

  # Convert reference input to array
  @pdata = @{$pdata[0]} if scalar @pdata == 1 && ref($pdata[0]) eq 'ARRAY';

  return '' if scalar @pdata == 0;

  my $n = $pdata[0];
  my $header = "[MPU - Primality Certificate]\nVersion 1.0\n\nProof for:\nN $n\n\n";

  my $cert = _convert_cert(\@pdata);
  return '' if $cert eq '';
  return $header . $cert;
}


###############################################################################
# Verify certificate
###############################################################################

sub _primality_error ($) {  ## no critic qw(ProhibitSubroutinePrototypes)
  print "primality fail: $_[0]\n" if prime_get_config->{'verbose'};
  return;  # error in certificate
}

sub _pfail ($) {            ## no critic qw(ProhibitSubroutinePrototypes)
  print "primality fail: $_[0]\n" if prime_get_config->{'verbose'};
  return;  # Failed a condition
}

sub _read_vars {
  my $lines = shift;
  my $type = shift;
  my %vars = map { $_ => 1 } @_;
  my %return;
  while (scalar keys %vars) {
    my $line = shift @$lines;
    return _primality_error("end of file during type $type") unless defined $line;
    # Skip comments and blank lines
    next if $line =~ /^\s*#/ or $line =~ /^\s*$/;
    chomp($line);
    return _primality_error("Still missing values in type $type") if $line =~ /^Type /;
    if ($line =~ /^(\S+)\s+(-?\d+)/) {
      my ($var, $val) = ($1, $2);
      $var =~ tr/a-z/A-Z/;
      return _primality_error("Type $type: repeated or inappropriate var: $line") unless defined $vars{$var};
      $return{$var} = $val;
      delete $vars{$var};
    } else {
      return _primality_error("Unrecognized line: $line");
    }
  }
  # Now return them in the order given, turned into bigints.
  return map { Math::BigInt->new("$return{$_}") } @_;
}

sub _is_perfect_square {
  my($n) = @_;

  if (ref($n) eq 'Math::BigInt') {
    my $mc = int(($n & 31)->bstr);
    if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) {
      my $sq = $n->copy->bsqrt->bfloor;
      $sq->bmul($sq);
      return 1 if $sq == $n;
    }
  } else {
    my $mc = $n & 31;
    if ($mc==0||$mc==1||$mc==4||$mc==9||$mc==16||$mc==17||$mc==25) {
      my $sq = int(sqrt($n));
      return 1 if ($sq*$sq) == $n;
    }
  }
  0;
}

# Calculate Jacobi symbol (M|N)
sub _jacobi {
  my($n, $m) = @_;
  return 0 if $m <= 0 || ($m % 2) == 0;
  my $j = 1;
  if ($n < 0) {
    $n = -$n;
    $j = -$j if ($m % 4) == 3;
  }
  # Split loop so we can reduce n/m to non-bigints after first iteration.
  if ($n != 0) {
    while (($n % 2) == 0) {
      $n >>= 1;
      $j = -$j if ($m % 8) == 3 || ($m % 8) == 5;
    }
    ($n, $m) = ($m, $n);
    $j = -$j if ($n % 4) == 3 && ($m % 4) == 3;
    $n = $n % $m;
    $n = int($n->bstr) if ref($n) eq 'Math::BigInt' && $n <= $_maxint;
    $m = int($m->bstr) if ref($m) eq 'Math::BigInt' && $m <= $_maxint;
  }
  while ($n != 0) {
    while (($n % 2) == 0) {
      $n >>= 1;
      $j = -$j if ($m % 8) == 3 || ($m % 8) == 5;
    }
    ($n, $m) = ($m, $n);
    $j = -$j if ($n % 4) == 3 && ($m % 4) == 3;
    $n = $n % $m;
  }
  return ($m == 1) ? $j : 0;
}

# Proof handlers (parse input and call verification)

sub _prove_ecpp {
  _verify_ecpp( _read_vars($_[0], 'ECPP', qw/N A B M Q X Y/) );
}
sub _prove_ecpp3 {
  _verify_ecpp3( _read_vars($_[0], 'ECPP3', qw/N S R A B T/) );
}
sub _prove_ecpp4 {
  _verify_ecpp4( _read_vars($_[0], 'ECPP4', qw/N S R J T/) );
}
sub _prove_bls15 {
  _verify_bls15( _read_vars($_[0], 'BLS15', qw/N Q LP LQ/) );
}
sub _prove_bls3 {
  _verify_bls3( _read_vars($_[0], 'BLS3', qw/N Q A/) );
}
sub _prove_pock {
  _verify_pock( _read_vars($_[0], 'POCKLINGTON', qw/N Q A/) );
}
sub _prove_small {
  _verify_small( _read_vars($_[0], 'Small', qw/N/) );
}
sub _prove_bls5 {
  my $lines = shift;
  # No good way to do this using read_vars
  my ($n, @Q, @A);
  my $index = 0;
  $Q[0] = Math::BigInt->new(2);  # 2 is implicit
  while (1) {
    my $line = shift @$lines;
    return _primality_error("end of file during type BLS5") unless defined $line;
    # Skip comments and blank lines
    next if $line =~ /^\s*#/ or $line =~ /^\s*$/;
    # Stop when we see a line starting with -.
    last if $line =~ /^-/;
    chomp($line);
    if ($line =~ /^N\s+(\d+)/) {
      return _primality_error("BLS5: N redefined") if defined $n;
      $n = Math::BigInt->new("$1");
    } elsif ($line =~ /^Q\[(\d+)\]\s+(\d+)/) {
      $index++;
      return _primality_error("BLS5: Invalid index: $1") unless $1 == $index;
      $Q[$1] = Math::BigInt->new("$2");
    } elsif ($line =~ /^A\[(\d+)\]\s+(\d+)/) {
      return _primality_error("BLS5: Invalid index: A[$1]") unless $1 >= 0 && $1 <= $index;
      $A[$1] = Math::BigInt->new("$2");
    } else {
      return _primality_error("Unrecognized line: $line");
    }
  }
  _verify_bls5($n, \@Q, \@A);
}

sub _prove_lucas {
  my $lines = shift;
  # No good way to do this using read_vars
  my ($n, @Q, $a);
  my $index = 0;
  while (1) {
    my $line = shift @$lines;
    return _primality_error("end of file during type Lucas") unless defined $line;
    # Skip comments and blank lines
    next if $line =~ /^\s*#/ or $line =~ /^\s*$/;
    chomp($line);
    if ($line =~ /^N\s+(\d+)/) {
      return _primality_error("Lucas: N redefined") if defined $n;
      $n = Math::BigInt->new("$1");
    } elsif ($line =~ /^Q\[(\d+)\]\s+(\d+)/) {
      $index++;
      return _primality_error("Lucas: Invalid index: $1") unless $1 == $index;
      $Q[$1] = Math::BigInt->new("$2");
    } elsif ($line =~ /^A\s+(\d+)/) {
      $a = Math::BigInt->new("$1");
      last;
    } else {
      return _primality_error("Unrecognized line: $line");
    }
  }
  _verify_lucas($n, \@Q, $a);
}

# Verification routines

sub _verify_ecpp {
  my ($n, $a, $b, $m, $q, $x, $y) = @_;
  return unless defined $n;
  $a %= $n if $a < 0;
  $b %= $n if $b < 0;
  return _pfail "ECPP: $n failed N > 0" unless $n > 0;
  return _pfail "ECPP: $n failed gcd(N, 6) = 1" unless Math::BigInt::bgcd($n, 6) == 1;
  return _pfail "ECPP: $n failed gcd(4*a^3 + 27*b^2, N) = 1"
    unless Math::BigInt::bgcd(4*$a*$a*$a+27*$b*$b,$n) == 1;
  return _pfail "ECPP: $n failed Y^2 = X^3 + A*X + B mod N"
    unless ($y*$y) % $n == ($x*$x*$x + $a*$x + $b) % $n;
  return _pfail "ECPP: $n failed M >= N - 2*sqrt(N) + 1" unless $m >= $n + 1 - $n->copy->bmul(4)->bsqrt();
  return _pfail "ECPP: $n failed M <= N + 2*sqrt(N) + 1" unless $m <= $n + 1 + $n->copy->bmul(4)->bsqrt();
  return _pfail "ECPP: $n failed Q > (N^(1/4)+1)^2" unless $q > $n->copy->broot(4)->badd(1)->bpow(2);
  return _pfail "ECPP: $n failed Q < N" unless $q < $n;
  return _pfail "ECPP: $n failed M != Q" unless $m != $q;
  my ($mdivq, $rem) = $m->copy->bdiv($q);
  return _pfail "ECPP: $n failed Q divides M" unless $rem == 0;

  # Now verify the elliptic curve
  my $correct_point = 0;
  if (prime_get_config->{'gmp'} && defined &Math::Prime::Util::GMP::_validate_ecpp_curve) {
    $correct_point = Math::Prime::Util::GMP::_validate_ecpp_curve($a, $b, $n, $x, $y, $m, $q);
  } else {
    if (!defined $Math::Prime::Util::ECAffinePoint::VERSION) {
      eval { require Math::Prime::Util::ECAffinePoint; 1; }
      or do { die "Cannot load Math::Prime::Util::ECAffinePoint"; };
    }
    my $ECP = Math::Prime::Util::ECAffinePoint->new($a, $b, $n, $x, $y);
    # Compute U = (m/q)P, check U != point at infinity
    $ECP->mul( $m->copy->bdiv($q)->as_int );
    if (!$ECP->is_infinity) {
      # Compute V = qU, check V = point at infinity
      $ECP->mul( $q );
      $correct_point = 1 if $ECP->is_infinity;
    }
  }
  return _pfail "ECPP: $n failed elliptic curve conditions" unless $correct_point;
  ($n, $q);
}
sub _verify_ecpp3 {
  my ($n, $s, $r, $a, $b, $t) = @_;
  return unless defined $n;
  return _pfail "ECPP3: $n failed |A| <= N/2" unless abs($a) <= $n/2;
  return _pfail "ECPP3: $n failed |B| <= N/2" unless abs($b) <= $n/2;
  return _pfail "ECPP3: $n failed T >= 0" unless $t >= 0;
  return _pfail "ECPP3: $n failed T < N" unless $t < $n;
  my $l = ($t*$t*$t + $a*$t + $b) % $n;
  _verify_ecpp( $n,
               ($a * $l*$l) % $n,
               ($b * $l*$l*$l) % $n,
               $r*$s,
               $r,
               ($t*$l) % $n,
               ($l*$l) % $n    );
}
sub _verify_ecpp4 {
  my ($n, $s, $r, $j, $t) = @_;
  return unless defined $n;
  return _pfail "ECPP4: $n failed |J| <= N/2" unless abs($j) <= $n/2;
  return _pfail "ECPP4: $n failed T >= 0" unless $t >= 0;
  return _pfail "ECPP4: $n failed T < N" unless $t < $n;
  my $a = 3 * $j * (1728 - $j);
  my $b = 2 * $j * (1728 - $j) * (1728 - $j);
  my $l = ($t*$t*$t + $a*$t + $b) % $n;
  _verify_ecpp( $n,
               ($a * $l*$l) % $n,
               ($b * $l*$l*$l) % $n,
               $r*$s,
               $r,
               ($t*$l) % $n,
               ($l*$l) % $n    );
}

sub _verify_bls15 {
  my ($n, $q, $lp, $lq) = @_;
  return unless defined $n;
  return _pfail "BLS15: $n failed Q odd" unless $q->is_odd();
  return _pfail "BLS15: $n failed Q > 2" unless $q > 2;
  my ($m, $rem) = ($n+1)->copy->bdiv($q);
  return _pfail "BLS15: $n failed Q divides N+1" unless $rem == 0;
  return _pfail "BLS15: $n failed MQ-1 = N" unless $m*$q-1 == $n;
  return _pfail "BLS15: $n failed M > 0" unless $m > 0;
  return _pfail "BLS15: $n failed 2Q-1 > sqrt(N)" unless 2*$q-1 > $n->copy->bsqrt();
  my $D = $lp*$lp - 4*$lq;
  return _pfail "BLS15: $n failed D != 0" unless $D != 0;
  return _pfail "BLS15: $n failed jacobi(D,N) = -1" unless _jacobi($D,$n) == -1;
  return _pfail "BLS15: $n failed V_{m/2} mod N != 0"
      unless (lucas_sequence($n, $lp, $lq, $m/2))[1] != 0;
  return _pfail "BLS15: $n failed V_{(N+1)/2} mod N == 0"
      unless (lucas_sequence($n, $lp, $lq, ($n+1)/2))[1] == 0;
  ($n, $q);
}

sub _verify_bls3 {
  my ($n, $q, $a) = @_;
  return unless defined $n;
  return _pfail "BLS3: $n failed Q odd" unless $q->is_odd();
  return _pfail "BLS3: $n failed Q > 2" unless $q > 2;
  my ($m, $rem) = ($n-1)->copy->bdiv($q);
  return _pfail "BLS3: $n failed Q divides N-1" unless $rem == 0;
  return _pfail "BLS3: $n failed MQ+1 = N" unless $m*$q+1 == $n;
  return _pfail "BLS3: $n failed M > 0" unless $m > 0;
  return _pfail "BLS3: $n failed 2Q+1 > sqrt(n)" unless 2*$q+1 > $n->copy->bsqrt();
  return _pfail "BLS3: $n failed A^((N-1)/2) = N-1 mod N" unless $a->copy->bmodpow(($n-1)/2, $n) == $n-1;
  return _pfail "BLS3: $n failed A^(M/2) != N-1 mod N" unless $a->copy->bmodpow($m/2,$n) != $n-1;
  ($n, $q);
}
sub _verify_pock {
  my ($n, $q, $a) = @_;
  return unless defined $n;
  my ($m, $rem) = ($n-1)->copy->bdiv($q);
  return _pfail "Pocklington: $n failed Q divides N-1" unless $rem == 0;
  return _pfail "Pocklington: $n failed M is even" unless $m->is_even();
  return _pfail "Pocklington: $n failed M > 0" unless $m > 0;
  return _pfail "Pocklington: $n failed M < Q" unless $m < $q;
  return _pfail "Pocklington: $n failed MQ+1 = N" unless $m*$q+1 == $n;
  return _pfail "Pocklington: $n failed A > 1" unless $a > 1;
  return _pfail "Pocklington: $n failed A^(N-1) mod N = 1"
    unless $a->copy->bmodpow($n-1, $n) == 1;
  return _pfail "Pocklington: $n failed gcd(A^M - 1, N) = 1"
    unless Math::BigInt::bgcd($a->copy->bmodpow($m, $n)-1, $n) == 1;
  ($n, $q);
}
sub _verify_small {
  my ($n) = @_;
  return unless defined $n;
  return _pfail "Small n $n is > 2^64\n" if $n > $_smallval;
  return _pfail "Small n $n does not pass BPSW" unless is_prob_prime($n);
  ($n);
}

sub _verify_bls5 {
  my ($n, $Qr, $Ar) = @_;
  return unless defined $n;
  my @Q = @{$Qr};
  my @A = @{$Ar};
  my $nm1 = $n - 1;
  my $F = Math::BigInt->bone;
  my $R = $nm1->copy;
  my $index = $#Q;
  foreach my $i (0 .. $index) {
    return _primality_error "BLS5: $n failed Q[$i] doesn't exist" unless defined $Q[$i];
    $A[$i] = Math::BigInt->new(2) unless defined $A[$i];
    return _pfail "BLS5: $n failed Q[$i] > 1" unless $Q[$i] > 1;
    return _pfail "BLS5: $n failed Q[$i] < N-1" unless $Q[$i] < $nm1;
    return _pfail "BLS5: $n failed A[$i] > 1" unless $A[$i] > 1;
    return _pfail "BLS5: $n failed A[$i] < N" unless $A[$i] < $n;
    return _pfail "BLS5: $n failed Q[$i] divides N-1" unless ($nm1 % $Q[$i]) == 0;
    while (($R % $Q[$i]) == 0) {
      $F *= $Q[$i];
      $R /= $Q[$i];
    }
  }
  die "BLS5: Internal error R != (N-1)/F\n" unless $R == $nm1/$F;
  return _pfail "BLS5: $n failed F is even" unless $F->is_even();
  return _pfail "BLS5: $n failed gcd(F, R) = 1\n" unless Math::BigInt::bgcd($F,$R) == 1;
  my ($s, $r) = $R->copy->bdiv(2*$F);
  my $P = ($F+1) * (2 * $F * $F + ($r-1)*$F + 1);
  return _pfail "BLS5: $n failed n < P" unless $n < $P;
  return _pfail "BLS5: $n failed s=0 OR r^2-8s not a perfect square"
    unless $s == 0 or !_is_perfect_square($r*$r - 8*$s);
  foreach my $i (0 .. $index) {
    my $a = $A[$i];
    my $q = $Q[$i];
    return _pfail "BLS5: $n failed A[i]^(N-1) mod N = 1"
      unless $a->copy->bmodpow($nm1, $n)->is_one;
    return _pfail "BLS5: $n failed gcd(A[i]^((N-1)/Q[i])-1, N) = 1"
      unless Math::BigInt::bgcd($a->copy->bmodpow($nm1/$q, $n)->bdec, $n)->is_one;
  }
  ($n, @Q);
}

sub _verify_lucas {
  my ($n, $Qr, $a) = @_;
  return unless defined $n;
  my @Q = @{$Qr};
  my $index = $#Q;
  return _pfail "Lucas: $n failed A > 1" unless $a > 1;
  return _pfail "Lucas: $n failed A < N" unless $a < $n;
  my $nm1 = $n - 1;
  my $F = Math::BigInt->bone;
  my $R = $nm1->copy;
  return _pfail "Lucas: $n failed A^(N-1) mod N = 1"
    unless $a->copy->bmodpow($nm1, $n) == 1;
  foreach my $i (1 .. $index) {
    return _primality_error "Lucas: $n failed Q[$i] doesn't exist" unless defined $Q[$i];
    return _pfail "Lucas: $n failed Q[$i] > 1" unless $Q[$i] > 1;
    return _pfail "Lucas: $n failed Q[$i] < N-1" unless $Q[$i] < $nm1;
    return _pfail "Lucas: $n failed Q[$i] divides N-1" unless ($nm1 % $Q[$i]) == 0;
    return _pfail "Lucas: $n failed A^((N-1)/Q[$i]) mod N != 1"
      unless $a->copy->bmodpow($nm1/$Q[$i], $n) != 1;
    while (($R % $Q[$i]) == 0) {
      $F *= $Q[$i];
      $R /= $Q[$i];
    }
  }
  return _pfail("Lucas: $n failed N-1 has only factors Q") unless $R == 1 && $F == $nm1;
  shift @Q;  # Remove Q[0]
  ($n, @Q);
}

sub verify_cert {
  my $cert = (@_ == 1) ? $_[0] : convert_array_cert_to_string(@_);
  $cert = convert_array_cert_to_string($cert) if ref($cert) eq 'ARRAY';
  return 0 if $cert eq '';

  my %parts;  # Map of "N is prime if Q is prime"
  my %proof_funcs = (
    ECPP        =>  \&_prove_ecpp,    # Standard ECPP proof
    ECPP3       =>  \&_prove_ecpp3,   # Primo type 3
    ECPP4       =>  \&_prove_ecpp4,   # Primo type 4
    BLS15       =>  \&_prove_bls15,   # basic n+1, includes Primo type 2
    BLS3        =>  \&_prove_bls3,    # basic n-1
    BLS5        =>  \&_prove_bls5,    # much better n-1
    SMALL       =>  \&_prove_small,   # n <= 2^64
    POCKLINGTON =>  \&_prove_pock,    # simple n-1, Primo type 1
    LUCAS       =>  \&_prove_lucas,   # n-1 completely factored
  );
  my $base = 10;
  my $cert_type = 'Unknown';
  my $N;

  my @lines = split /^/, $cert;
  my $lines = \@lines;
  while (@$lines)  {
    my $line = shift @$lines;
    next if $line =~ /^\s*#/ or $line =~ /^\s*$/;  # Skip comments / blank lines
    chomp($line);
    if ($line =~ /^\[(\S+) - Primality Certificate\]/) {
      if ($1 ne 'MPU') {
        return _primality_error "Unknown certificate type: $1";
      }
      $cert_type = $1;
      next;
    }
    if ( ($cert_type eq 'PRIMO' && $line =~ /^\[Candidate\]/) || ($cert_type eq 'MPU' && $line =~ /^Proof for:/) ) {
      return _primality_error "Certificate with multiple N values" if defined $N;
      ($N) = _read_vars($lines, 'Proof for', qw/N/);
      if (!is_prob_prime($N)) {
        _pfail "N '$N' does not look prime.";
        return 0;
      }
      next;
    }
    if ($line =~ /^Base (\d+)/) {
      $base = $1;
      return _primality_error "Only base 10 supported, sorry" unless $base == 10;
      next;
    }
    if ($line =~ /^Type (.*?)\s*$/) {
      return _primality_error("Starting type without telling me the N value!") unless defined $N;
      my $type = $1;
      $type =~ tr/a-z/A-Z/;
      error("Unknown type: $type") unless defined $proof_funcs{$type};
      my ($n, @q) = $proof_funcs{$type}->($lines);
      return 0 unless defined $n;
      $parts{$n} = [@q];
    }
  }

  return _primality_error("No N") unless defined $N;
  my @qs = ($N);
  while (@qs) {
    my $q = shift @qs;
    # Check that this q has a chain
    if (!defined $parts{$q}) {
      if ($q > $_smallval) {
        _primality_error "q value $q has no proof\n";
        return 0;
      }
      if (!is_prob_prime($q)) {
        _pfail "Small n $q does not pass BPSW";
        return 0;
      }
    } else {
      die "Internal error: Invalid parts entry" if ref($parts{$q}) ne 'ARRAY';
      # q is prime if all it's chains are prime.
      push @qs, @{$parts{$q}};
    }
  }
  1;
}

1;

__END__


# ABSTRACT:  Primality proving

=pod

=encoding utf8

=for stopwords mul

=head1 NAME

Math::Prime::Util::PrimalityProving - Primality proofs and certificates


=head1 VERSION

Version 0.73


=head1 SYNOPSIS

=head1 DESCRIPTION

Routines to support primality proofs and certificate verification.


=head1 FUNCTIONS

=head2 primality_proof_lucas

Given a positive number C<n> as input, performs a full factorization of C<n-1>,
then attempts a Lucas test on the result.  A Pratt-style certificate is
returned.  Note that if the input is composite, this will take a B<very> long
time to return.

=head2 primality_proof_bls75

Given a positive number C<n> as input, performs a partial factorization of
C<n-1>, then attempts a proof using theorem 5 of Brillhart, Lehmer, and
Selfridge's 1975 paper.  This can take a long time to return if given a
composite, though it should not be anywhere near as long as the Lucas test.

=head2 convert_array_cert_to_string

Takes as input a Perl structure certificate, used by Math::Prime::Util
from version 0.26 through 0.29, and converts it to a multi-line text
certificate starting with "[MPU - Primality Certificate]".  This is the
new format produced and processed by Math::Prime::Util, Math::Prime::Util::GMP,
and associated tools.

=head2 verify_cert

Takes a MPU primality certificate and verifies that it does prove the
primality of the number it represents (the N after the "Proof for:" line).
For backwards compatibility, if given an old-style Perl structure, it will
be converted then verified.

The return value will be C<0> (failed to verify) or C<1> (verified).
A result of C<0> does I<not> indicate the number is composite; it only
indicates the proof given is not sufficient.

If the certificate is malformed, the routine will carp a warning in addition
to returning 0.  If the C<verbose> option is set (see L</prime_set_config>)
then if the validation fails, the reason for the failure is printed in
addition to returning 0.  If the C<verbose> option is set to 2 or higher, then
a message indicating success and the certificate type is also printed.

A later release may add support for
L<Primo|http://www.ellipsa.eu/public/primo/primo.html>
certificates, as all the method verifications are coded.


=head1 SEE ALSO

L<Math::Prime::Util>

=head1 AUTHORS

Dana Jacobsen E<lt>dana@acm.orgE<gt>


=head1 COPYRIGHT

Copyright 2012-2013 by Dana Jacobsen E<lt>dana@acm.orgE<gt>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

=cut

Youez - 2016 - github.com/yon3zu
LinuXploit