���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/Strawberry/c/lib/python3.9/test/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/Strawberry/c/lib/python3.9/test/test_float.py
import fractions
import operator
import os
import random
import sys
import struct
import time
import unittest

from test import support
from test.test_grammar import (VALID_UNDERSCORE_LITERALS,
                               INVALID_UNDERSCORE_LITERALS)
from math import isinf, isnan, copysign, ldexp

INF = float("inf")
NAN = float("nan")

have_getformat = hasattr(float, "__getformat__")
requires_getformat = unittest.skipUnless(have_getformat,
                                         "requires __getformat__")
requires_setformat = unittest.skipUnless(hasattr(float, "__setformat__"),
                                         "requires __setformat__")

#locate file with float format test values
test_dir = os.path.dirname(__file__) or os.curdir
format_testfile = os.path.join(test_dir, 'formatfloat_testcases.txt')

class FloatSubclass(float):
    pass

class OtherFloatSubclass(float):
    pass

class GeneralFloatCases(unittest.TestCase):

    def test_float(self):
        self.assertEqual(float(3.14), 3.14)
        self.assertEqual(float(314), 314.0)
        self.assertEqual(float("  3.14  "), 3.14)
        self.assertRaises(ValueError, float, "  0x3.1  ")
        self.assertRaises(ValueError, float, "  -0x3.p-1  ")
        self.assertRaises(ValueError, float, "  +0x3.p-1  ")
        self.assertRaises(ValueError, float, "++3.14")
        self.assertRaises(ValueError, float, "+-3.14")
        self.assertRaises(ValueError, float, "-+3.14")
        self.assertRaises(ValueError, float, "--3.14")
        self.assertRaises(ValueError, float, ".nan")
        self.assertRaises(ValueError, float, "+.inf")
        self.assertRaises(ValueError, float, ".")
        self.assertRaises(ValueError, float, "-.")
        self.assertRaises(TypeError, float, {})
        self.assertRaisesRegex(TypeError, "not 'dict'", float, {})
        # Lone surrogate
        self.assertRaises(ValueError, float, '\uD8F0')
        # check that we don't accept alternate exponent markers
        self.assertRaises(ValueError, float, "-1.7d29")
        self.assertRaises(ValueError, float, "3D-14")
        self.assertEqual(float("  \u0663.\u0661\u0664  "), 3.14)
        self.assertEqual(float("\N{EM SPACE}3.14\N{EN SPACE}"), 3.14)
        # extra long strings should not be a problem
        float(b'.' + b'1'*1000)
        float('.' + '1'*1000)
        # Invalid unicode string
        # See bpo-34087
        self.assertRaises(ValueError, float, '\u3053\u3093\u306b\u3061\u306f')

    def test_underscores(self):
        for lit in VALID_UNDERSCORE_LITERALS:
            if not any(ch in lit for ch in 'jJxXoObB'):
                self.assertEqual(float(lit), eval(lit))
                self.assertEqual(float(lit), float(lit.replace('_', '')))
        for lit in INVALID_UNDERSCORE_LITERALS:
            if lit in ('0_7', '09_99'):  # octals are not recognized here
                continue
            if not any(ch in lit for ch in 'jJxXoObB'):
                self.assertRaises(ValueError, float, lit)
        # Additional test cases; nan and inf are never valid as literals,
        # only in the float() constructor, but we don't allow underscores
        # in or around them.
        self.assertRaises(ValueError, float, '_NaN')
        self.assertRaises(ValueError, float, 'Na_N')
        self.assertRaises(ValueError, float, 'IN_F')
        self.assertRaises(ValueError, float, '-_INF')
        self.assertRaises(ValueError, float, '-INF_')
        # Check that we handle bytes values correctly.
        self.assertRaises(ValueError, float, b'0_.\xff9')

    def test_non_numeric_input_types(self):
        # Test possible non-numeric types for the argument x, including
        # subclasses of the explicitly documented accepted types.
        class CustomStr(str): pass
        class CustomBytes(bytes): pass
        class CustomByteArray(bytearray): pass

        factories = [
            bytes,
            bytearray,
            lambda b: CustomStr(b.decode()),
            CustomBytes,
            CustomByteArray,
            memoryview,
        ]
        try:
            from array import array
        except ImportError:
            pass
        else:
            factories.append(lambda b: array('B', b))

        for f in factories:
            x = f(b" 3.14  ")
            with self.subTest(type(x)):
                self.assertEqual(float(x), 3.14)
                with self.assertRaisesRegex(ValueError, "could not convert"):
                    float(f(b'A' * 0x10))

    def test_float_memoryview(self):
        self.assertEqual(float(memoryview(b'12.3')[1:4]), 2.3)
        self.assertEqual(float(memoryview(b'12.3\x00')[1:4]), 2.3)
        self.assertEqual(float(memoryview(b'12.3 ')[1:4]), 2.3)
        self.assertEqual(float(memoryview(b'12.3A')[1:4]), 2.3)
        self.assertEqual(float(memoryview(b'12.34')[1:4]), 2.3)

    def test_error_message(self):
        def check(s):
            with self.assertRaises(ValueError, msg='float(%r)' % (s,)) as cm:
                float(s)
            self.assertEqual(str(cm.exception),
                'could not convert string to float: %r' % (s,))

        check('\xbd')
        check('123\xbd')
        check('  123 456  ')
        check(b'  123 456  ')

        # non-ascii digits (error came from non-digit '!')
        check('\u0663\u0661\u0664!')
        # embedded NUL
        check('123\x00')
        check('123\x00 245')
        check('123\x00245')
        # byte string with embedded NUL
        check(b'123\x00')
        # non-UTF-8 byte string
        check(b'123\xa0')

    @support.run_with_locale('LC_NUMERIC', 'fr_FR', 'de_DE')
    def test_float_with_comma(self):
        # set locale to something that doesn't use '.' for the decimal point
        # float must not accept the locale specific decimal point but
        # it still has to accept the normal python syntax
        import locale
        if not locale.localeconv()['decimal_point'] == ',':
            self.skipTest('decimal_point is not ","')

        self.assertEqual(float("  3.14  "), 3.14)
        self.assertEqual(float("+3.14  "), 3.14)
        self.assertEqual(float("-3.14  "), -3.14)
        self.assertEqual(float(".14  "), .14)
        self.assertEqual(float("3.  "), 3.0)
        self.assertEqual(float("3.e3  "), 3000.0)
        self.assertEqual(float("3.2e3  "), 3200.0)
        self.assertEqual(float("2.5e-1  "), 0.25)
        self.assertEqual(float("5e-1"), 0.5)
        self.assertRaises(ValueError, float, "  3,14  ")
        self.assertRaises(ValueError, float, "  +3,14  ")
        self.assertRaises(ValueError, float, "  -3,14  ")
        self.assertRaises(ValueError, float, "  0x3.1  ")
        self.assertRaises(ValueError, float, "  -0x3.p-1  ")
        self.assertRaises(ValueError, float, "  +0x3.p-1  ")
        self.assertEqual(float("  25.e-1  "), 2.5)
        self.assertAlmostEqual(float("  .25e-1  "), .025)

    def test_floatconversion(self):
        # Make sure that calls to __float__() work properly
        class Foo1(object):
            def __float__(self):
                return 42.

        class Foo2(float):
            def __float__(self):
                return 42.

        class Foo3(float):
            def __new__(cls, value=0.):
                return float.__new__(cls, 2*value)

            def __float__(self):
                return self

        class Foo4(float):
            def __float__(self):
                return 42

        # Issue 5759: __float__ not called on str subclasses (though it is on
        # unicode subclasses).
        class FooStr(str):
            def __float__(self):
                return float(str(self)) + 1

        self.assertEqual(float(Foo1()), 42.)
        self.assertEqual(float(Foo2()), 42.)
        with self.assertWarns(DeprecationWarning):
            self.assertEqual(float(Foo3(21)), 42.)
        self.assertRaises(TypeError, float, Foo4(42))
        self.assertEqual(float(FooStr('8')), 9.)

        class Foo5:
            def __float__(self):
                return ""
        self.assertRaises(TypeError, time.sleep, Foo5())

        # Issue #24731
        class F:
            def __float__(self):
                return OtherFloatSubclass(42.)
        with self.assertWarns(DeprecationWarning):
            self.assertEqual(float(F()), 42.)
        with self.assertWarns(DeprecationWarning):
            self.assertIs(type(float(F())), float)
        with self.assertWarns(DeprecationWarning):
            self.assertEqual(FloatSubclass(F()), 42.)
        with self.assertWarns(DeprecationWarning):
            self.assertIs(type(FloatSubclass(F())), FloatSubclass)

        class MyIndex:
            def __init__(self, value):
                self.value = value
            def __index__(self):
                return self.value

        self.assertEqual(float(MyIndex(42)), 42.0)
        self.assertRaises(OverflowError, float, MyIndex(2**2000))

        class MyInt:
            def __int__(self):
                return 42

        self.assertRaises(TypeError, float, MyInt())

    def test_keyword_args(self):
        with self.assertRaisesRegex(TypeError, 'keyword argument'):
            float(x='3.14')

    def test_is_integer(self):
        self.assertFalse((1.1).is_integer())
        self.assertTrue((1.).is_integer())
        self.assertFalse(float("nan").is_integer())
        self.assertFalse(float("inf").is_integer())

    def test_floatasratio(self):
        for f, ratio in [
                (0.875, (7, 8)),
                (-0.875, (-7, 8)),
                (0.0, (0, 1)),
                (11.5, (23, 2)),
            ]:
            self.assertEqual(f.as_integer_ratio(), ratio)

        for i in range(10000):
            f = random.random()
            f *= 10 ** random.randint(-100, 100)
            n, d = f.as_integer_ratio()
            self.assertEqual(float(n).__truediv__(d), f)

        R = fractions.Fraction
        self.assertEqual(R(0, 1),
                         R(*float(0.0).as_integer_ratio()))
        self.assertEqual(R(5, 2),
                         R(*float(2.5).as_integer_ratio()))
        self.assertEqual(R(1, 2),
                         R(*float(0.5).as_integer_ratio()))
        self.assertEqual(R(4728779608739021, 2251799813685248),
                         R(*float(2.1).as_integer_ratio()))
        self.assertEqual(R(-4728779608739021, 2251799813685248),
                         R(*float(-2.1).as_integer_ratio()))
        self.assertEqual(R(-2100, 1),
                         R(*float(-2100.0).as_integer_ratio()))

        self.assertRaises(OverflowError, float('inf').as_integer_ratio)
        self.assertRaises(OverflowError, float('-inf').as_integer_ratio)
        self.assertRaises(ValueError, float('nan').as_integer_ratio)

    def test_float_containment(self):
        floats = (INF, -INF, 0.0, 1.0, NAN)
        for f in floats:
            self.assertIn(f, [f])
            self.assertIn(f, (f,))
            self.assertIn(f, {f})
            self.assertIn(f, {f: None})
            self.assertEqual([f].count(f), 1, "[].count('%r') != 1" % f)
            self.assertIn(f, floats)

        for f in floats:
            # nonidentical containers, same type, same contents
            self.assertTrue([f] == [f], "[%r] != [%r]" % (f, f))
            self.assertTrue((f,) == (f,), "(%r,) != (%r,)" % (f, f))
            self.assertTrue({f} == {f}, "{%r} != {%r}" % (f, f))
            self.assertTrue({f : None} == {f: None}, "{%r : None} != "
                                                   "{%r : None}" % (f, f))

            # identical containers
            l, t, s, d = [f], (f,), {f}, {f: None}
            self.assertTrue(l == l, "[%r] not equal to itself" % f)
            self.assertTrue(t == t, "(%r,) not equal to itself" % f)
            self.assertTrue(s == s, "{%r} not equal to itself" % f)
            self.assertTrue(d == d, "{%r : None} not equal to itself" % f)

    def assertEqualAndEqualSign(self, a, b):
        # fail unless a == b and a and b have the same sign bit;
        # the only difference from assertEqual is that this test
        # distinguishes -0.0 and 0.0.
        self.assertEqual((a, copysign(1.0, a)), (b, copysign(1.0, b)))

    def test_float_floor(self):
        self.assertIsInstance(float(0.5).__floor__(), int)
        self.assertEqual(float(0.5).__floor__(), 0)
        self.assertEqual(float(1.0).__floor__(), 1)
        self.assertEqual(float(1.5).__floor__(), 1)
        self.assertEqual(float(-0.5).__floor__(), -1)
        self.assertEqual(float(-1.0).__floor__(), -1)
        self.assertEqual(float(-1.5).__floor__(), -2)
        self.assertEqual(float(1.23e167).__floor__(), 1.23e167)
        self.assertEqual(float(-1.23e167).__floor__(), -1.23e167)
        self.assertRaises(ValueError, float("nan").__floor__)
        self.assertRaises(OverflowError, float("inf").__floor__)
        self.assertRaises(OverflowError, float("-inf").__floor__)

    def test_float_ceil(self):
        self.assertIsInstance(float(0.5).__ceil__(), int)
        self.assertEqual(float(0.5).__ceil__(), 1)
        self.assertEqual(float(1.0).__ceil__(), 1)
        self.assertEqual(float(1.5).__ceil__(), 2)
        self.assertEqual(float(-0.5).__ceil__(), 0)
        self.assertEqual(float(-1.0).__ceil__(), -1)
        self.assertEqual(float(-1.5).__ceil__(), -1)
        self.assertEqual(float(1.23e167).__ceil__(), 1.23e167)
        self.assertEqual(float(-1.23e167).__ceil__(), -1.23e167)
        self.assertRaises(ValueError, float("nan").__ceil__)
        self.assertRaises(OverflowError, float("inf").__ceil__)
        self.assertRaises(OverflowError, float("-inf").__ceil__)

    @support.requires_IEEE_754
    def test_float_mod(self):
        # Check behaviour of % operator for IEEE 754 special cases.
        # In particular, check signs of zeros.
        mod = operator.mod

        self.assertEqualAndEqualSign(mod(-1.0, 1.0), 0.0)
        self.assertEqualAndEqualSign(mod(-1e-100, 1.0), 1.0)
        self.assertEqualAndEqualSign(mod(-0.0, 1.0), 0.0)
        self.assertEqualAndEqualSign(mod(0.0, 1.0), 0.0)
        self.assertEqualAndEqualSign(mod(1e-100, 1.0), 1e-100)
        self.assertEqualAndEqualSign(mod(1.0, 1.0), 0.0)

        self.assertEqualAndEqualSign(mod(-1.0, -1.0), -0.0)
        self.assertEqualAndEqualSign(mod(-1e-100, -1.0), -1e-100)
        self.assertEqualAndEqualSign(mod(-0.0, -1.0), -0.0)
        self.assertEqualAndEqualSign(mod(0.0, -1.0), -0.0)
        self.assertEqualAndEqualSign(mod(1e-100, -1.0), -1.0)
        self.assertEqualAndEqualSign(mod(1.0, -1.0), -0.0)

    @support.requires_IEEE_754
    def test_float_pow(self):
        # test builtin pow and ** operator for IEEE 754 special cases.
        # Special cases taken from section F.9.4.4 of the C99 specification

        for pow_op in pow, operator.pow:
            # x**NAN is NAN for any x except 1
            self.assertTrue(isnan(pow_op(-INF, NAN)))
            self.assertTrue(isnan(pow_op(-2.0, NAN)))
            self.assertTrue(isnan(pow_op(-1.0, NAN)))
            self.assertTrue(isnan(pow_op(-0.5, NAN)))
            self.assertTrue(isnan(pow_op(-0.0, NAN)))
            self.assertTrue(isnan(pow_op(0.0, NAN)))
            self.assertTrue(isnan(pow_op(0.5, NAN)))
            self.assertTrue(isnan(pow_op(2.0, NAN)))
            self.assertTrue(isnan(pow_op(INF, NAN)))
            self.assertTrue(isnan(pow_op(NAN, NAN)))

            # NAN**y is NAN for any y except +-0
            self.assertTrue(isnan(pow_op(NAN, -INF)))
            self.assertTrue(isnan(pow_op(NAN, -2.0)))
            self.assertTrue(isnan(pow_op(NAN, -1.0)))
            self.assertTrue(isnan(pow_op(NAN, -0.5)))
            self.assertTrue(isnan(pow_op(NAN, 0.5)))
            self.assertTrue(isnan(pow_op(NAN, 1.0)))
            self.assertTrue(isnan(pow_op(NAN, 2.0)))
            self.assertTrue(isnan(pow_op(NAN, INF)))

            # (+-0)**y raises ZeroDivisionError for y a negative odd integer
            self.assertRaises(ZeroDivisionError, pow_op, -0.0, -1.0)
            self.assertRaises(ZeroDivisionError, pow_op, 0.0, -1.0)

            # (+-0)**y raises ZeroDivisionError for y finite and negative
            # but not an odd integer
            self.assertRaises(ZeroDivisionError, pow_op, -0.0, -2.0)
            self.assertRaises(ZeroDivisionError, pow_op, -0.0, -0.5)
            self.assertRaises(ZeroDivisionError, pow_op, 0.0, -2.0)
            self.assertRaises(ZeroDivisionError, pow_op, 0.0, -0.5)

            # (+-0)**y is +-0 for y a positive odd integer
            self.assertEqualAndEqualSign(pow_op(-0.0, 1.0), -0.0)
            self.assertEqualAndEqualSign(pow_op(0.0, 1.0), 0.0)

            # (+-0)**y is 0 for y finite and positive but not an odd integer
            self.assertEqualAndEqualSign(pow_op(-0.0, 0.5), 0.0)
            self.assertEqualAndEqualSign(pow_op(-0.0, 2.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.0, 0.5), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.0, 2.0), 0.0)

            # (-1)**+-inf is 1
            self.assertEqualAndEqualSign(pow_op(-1.0, -INF), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, INF), 1.0)

            # 1**y is 1 for any y, even if y is an infinity or nan
            self.assertEqualAndEqualSign(pow_op(1.0, -INF), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, -2.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, -1.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, -0.5), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 0.5), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 1.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 2.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, INF), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, NAN), 1.0)

            # x**+-0 is 1 for any x, even if x is a zero, infinity, or nan
            self.assertEqualAndEqualSign(pow_op(-INF, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-0.5, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-0.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(0.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(0.5, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(2.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(INF, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(NAN, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-INF, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-0.5, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-0.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(0.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(0.5, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(INF, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(NAN, -0.0), 1.0)

            # x**y defers to complex pow for finite negative x and
            # non-integral y.
            self.assertEqual(type(pow_op(-2.0, -0.5)), complex)
            self.assertEqual(type(pow_op(-2.0, 0.5)), complex)
            self.assertEqual(type(pow_op(-1.0, -0.5)), complex)
            self.assertEqual(type(pow_op(-1.0, 0.5)), complex)
            self.assertEqual(type(pow_op(-0.5, -0.5)), complex)
            self.assertEqual(type(pow_op(-0.5, 0.5)), complex)

            # x**-INF is INF for abs(x) < 1
            self.assertEqualAndEqualSign(pow_op(-0.5, -INF), INF)
            self.assertEqualAndEqualSign(pow_op(-0.0, -INF), INF)
            self.assertEqualAndEqualSign(pow_op(0.0, -INF), INF)
            self.assertEqualAndEqualSign(pow_op(0.5, -INF), INF)

            # x**-INF is 0 for abs(x) > 1
            self.assertEqualAndEqualSign(pow_op(-INF, -INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, -INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(INF, -INF), 0.0)

            # x**INF is 0 for abs(x) < 1
            self.assertEqualAndEqualSign(pow_op(-0.5, INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(-0.0, INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.0, INF), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.5, INF), 0.0)

            # x**INF is INF for abs(x) > 1
            self.assertEqualAndEqualSign(pow_op(-INF, INF), INF)
            self.assertEqualAndEqualSign(pow_op(-2.0, INF), INF)
            self.assertEqualAndEqualSign(pow_op(2.0, INF), INF)
            self.assertEqualAndEqualSign(pow_op(INF, INF), INF)

            # (-INF)**y is -0.0 for y a negative odd integer
            self.assertEqualAndEqualSign(pow_op(-INF, -1.0), -0.0)

            # (-INF)**y is 0.0 for y negative but not an odd integer
            self.assertEqualAndEqualSign(pow_op(-INF, -0.5), 0.0)
            self.assertEqualAndEqualSign(pow_op(-INF, -2.0), 0.0)

            # (-INF)**y is -INF for y a positive odd integer
            self.assertEqualAndEqualSign(pow_op(-INF, 1.0), -INF)

            # (-INF)**y is INF for y positive but not an odd integer
            self.assertEqualAndEqualSign(pow_op(-INF, 0.5), INF)
            self.assertEqualAndEqualSign(pow_op(-INF, 2.0), INF)

            # INF**y is INF for y positive
            self.assertEqualAndEqualSign(pow_op(INF, 0.5), INF)
            self.assertEqualAndEqualSign(pow_op(INF, 1.0), INF)
            self.assertEqualAndEqualSign(pow_op(INF, 2.0), INF)

            # INF**y is 0.0 for y negative
            self.assertEqualAndEqualSign(pow_op(INF, -2.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(INF, -1.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(INF, -0.5), 0.0)

            # basic checks not covered by the special cases above
            self.assertEqualAndEqualSign(pow_op(-2.0, -2.0), 0.25)
            self.assertEqualAndEqualSign(pow_op(-2.0, -1.0), -0.5)
            self.assertEqualAndEqualSign(pow_op(-2.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, 1.0), -2.0)
            self.assertEqualAndEqualSign(pow_op(-2.0, 2.0), 4.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, -2.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, -1.0), -1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, 1.0), -1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, 2.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -2.0), 0.25)
            self.assertEqualAndEqualSign(pow_op(2.0, -1.0), 0.5)
            self.assertEqualAndEqualSign(pow_op(2.0, -0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(2.0, 0.0), 1.0)
            self.assertEqualAndEqualSign(pow_op(2.0, 1.0), 2.0)
            self.assertEqualAndEqualSign(pow_op(2.0, 2.0), 4.0)

            # 1 ** large and -1 ** large; some libms apparently
            # have problems with these
            self.assertEqualAndEqualSign(pow_op(1.0, -1e100), 1.0)
            self.assertEqualAndEqualSign(pow_op(1.0, 1e100), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, -1e100), 1.0)
            self.assertEqualAndEqualSign(pow_op(-1.0, 1e100), 1.0)

            # check sign for results that underflow to 0
            self.assertEqualAndEqualSign(pow_op(-2.0, -2000.0), 0.0)
            self.assertEqual(type(pow_op(-2.0, -2000.5)), complex)
            self.assertEqualAndEqualSign(pow_op(-2.0, -2001.0), -0.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -2000.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -2000.5), 0.0)
            self.assertEqualAndEqualSign(pow_op(2.0, -2001.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(-0.5, 2000.0), 0.0)
            self.assertEqual(type(pow_op(-0.5, 2000.5)), complex)
            self.assertEqualAndEqualSign(pow_op(-0.5, 2001.0), -0.0)
            self.assertEqualAndEqualSign(pow_op(0.5, 2000.0), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.5, 2000.5), 0.0)
            self.assertEqualAndEqualSign(pow_op(0.5, 2001.0), 0.0)

            # check we don't raise an exception for subnormal results,
            # and validate signs.  Tests currently disabled, since
            # they fail on systems where a subnormal result from pow
            # is flushed to zero (e.g. Debian/ia64.)
            #self.assertTrue(0.0 < pow_op(0.5, 1048) < 1e-315)
            #self.assertTrue(0.0 < pow_op(-0.5, 1048) < 1e-315)
            #self.assertTrue(0.0 < pow_op(0.5, 1047) < 1e-315)
            #self.assertTrue(0.0 > pow_op(-0.5, 1047) > -1e-315)
            #self.assertTrue(0.0 < pow_op(2.0, -1048) < 1e-315)
            #self.assertTrue(0.0 < pow_op(-2.0, -1048) < 1e-315)
            #self.assertTrue(0.0 < pow_op(2.0, -1047) < 1e-315)
            #self.assertTrue(0.0 > pow_op(-2.0, -1047) > -1e-315)


@requires_setformat
class FormatFunctionsTestCase(unittest.TestCase):

    def setUp(self):
        self.save_formats = {'double':float.__getformat__('double'),
                             'float':float.__getformat__('float')}

    def tearDown(self):
        float.__setformat__('double', self.save_formats['double'])
        float.__setformat__('float', self.save_formats['float'])

    def test_getformat(self):
        self.assertIn(float.__getformat__('double'),
                      ['unknown', 'IEEE, big-endian', 'IEEE, little-endian'])
        self.assertIn(float.__getformat__('float'),
                      ['unknown', 'IEEE, big-endian', 'IEEE, little-endian'])
        self.assertRaises(ValueError, float.__getformat__, 'chicken')
        self.assertRaises(TypeError, float.__getformat__, 1)

    def test_setformat(self):
        for t in 'double', 'float':
            float.__setformat__(t, 'unknown')
            if self.save_formats[t] == 'IEEE, big-endian':
                self.assertRaises(ValueError, float.__setformat__,
                                  t, 'IEEE, little-endian')
            elif self.save_formats[t] == 'IEEE, little-endian':
                self.assertRaises(ValueError, float.__setformat__,
                                  t, 'IEEE, big-endian')
            else:
                self.assertRaises(ValueError, float.__setformat__,
                                  t, 'IEEE, big-endian')
                self.assertRaises(ValueError, float.__setformat__,
                                  t, 'IEEE, little-endian')
            self.assertRaises(ValueError, float.__setformat__,
                              t, 'chicken')
        self.assertRaises(ValueError, float.__setformat__,
                          'chicken', 'unknown')

BE_DOUBLE_INF = b'\x7f\xf0\x00\x00\x00\x00\x00\x00'
LE_DOUBLE_INF = bytes(reversed(BE_DOUBLE_INF))
BE_DOUBLE_NAN = b'\x7f\xf8\x00\x00\x00\x00\x00\x00'
LE_DOUBLE_NAN = bytes(reversed(BE_DOUBLE_NAN))

BE_FLOAT_INF = b'\x7f\x80\x00\x00'
LE_FLOAT_INF = bytes(reversed(BE_FLOAT_INF))
BE_FLOAT_NAN = b'\x7f\xc0\x00\x00'
LE_FLOAT_NAN = bytes(reversed(BE_FLOAT_NAN))

# on non-IEEE platforms, attempting to unpack a bit pattern
# representing an infinity or a NaN should raise an exception.

@requires_setformat
class UnknownFormatTestCase(unittest.TestCase):
    def setUp(self):
        self.save_formats = {'double':float.__getformat__('double'),
                             'float':float.__getformat__('float')}
        float.__setformat__('double', 'unknown')
        float.__setformat__('float', 'unknown')

    def tearDown(self):
        float.__setformat__('double', self.save_formats['double'])
        float.__setformat__('float', self.save_formats['float'])

    def test_double_specials_dont_unpack(self):
        for fmt, data in [('>d', BE_DOUBLE_INF),
                          ('>d', BE_DOUBLE_NAN),
                          ('<d', LE_DOUBLE_INF),
                          ('<d', LE_DOUBLE_NAN)]:
            self.assertRaises(ValueError, struct.unpack, fmt, data)

    def test_float_specials_dont_unpack(self):
        for fmt, data in [('>f', BE_FLOAT_INF),
                          ('>f', BE_FLOAT_NAN),
                          ('<f', LE_FLOAT_INF),
                          ('<f', LE_FLOAT_NAN)]:
            self.assertRaises(ValueError, struct.unpack, fmt, data)


# on an IEEE platform, all we guarantee is that bit patterns
# representing infinities or NaNs do not raise an exception; all else
# is accident (today).
# let's also try to guarantee that -0.0 and 0.0 don't get confused.

class IEEEFormatTestCase(unittest.TestCase):

    @support.requires_IEEE_754
    def test_double_specials_do_unpack(self):
        for fmt, data in [('>d', BE_DOUBLE_INF),
                          ('>d', BE_DOUBLE_NAN),
                          ('<d', LE_DOUBLE_INF),
                          ('<d', LE_DOUBLE_NAN)]:
            struct.unpack(fmt, data)

    @support.requires_IEEE_754
    def test_float_specials_do_unpack(self):
        for fmt, data in [('>f', BE_FLOAT_INF),
                          ('>f', BE_FLOAT_NAN),
                          ('<f', LE_FLOAT_INF),
                          ('<f', LE_FLOAT_NAN)]:
            struct.unpack(fmt, data)

    @support.requires_IEEE_754
    def test_serialized_float_rounding(self):
        from _testcapi import FLT_MAX
        self.assertEqual(struct.pack("<f", 3.40282356e38), struct.pack("<f", FLT_MAX))
        self.assertEqual(struct.pack("<f", -3.40282356e38), struct.pack("<f", -FLT_MAX))

class FormatTestCase(unittest.TestCase):

    def test_format(self):
        # these should be rewritten to use both format(x, spec) and
        # x.__format__(spec)

        self.assertEqual(format(0.0, 'f'), '0.000000')

        # the default is 'g', except for empty format spec
        self.assertEqual(format(0.0, ''), '0.0')
        self.assertEqual(format(0.01, ''), '0.01')
        self.assertEqual(format(0.01, 'g'), '0.01')

        # empty presentation type should format in the same way as str
        # (issue 5920)
        x = 100/7.
        self.assertEqual(format(x, ''), str(x))
        self.assertEqual(format(x, '-'), str(x))
        self.assertEqual(format(x, '>'), str(x))
        self.assertEqual(format(x, '2'), str(x))

        self.assertEqual(format(1.0, 'f'), '1.000000')

        self.assertEqual(format(-1.0, 'f'), '-1.000000')

        self.assertEqual(format( 1.0, ' f'), ' 1.000000')
        self.assertEqual(format(-1.0, ' f'), '-1.000000')
        self.assertEqual(format( 1.0, '+f'), '+1.000000')
        self.assertEqual(format(-1.0, '+f'), '-1.000000')

        # % formatting
        self.assertEqual(format(-1.0, '%'), '-100.000000%')

        # conversion to string should fail
        self.assertRaises(ValueError, format, 3.0, "s")

        # other format specifiers shouldn't work on floats,
        #  in particular int specifiers
        for format_spec in ([chr(x) for x in range(ord('a'), ord('z')+1)] +
                            [chr(x) for x in range(ord('A'), ord('Z')+1)]):
            if not format_spec in 'eEfFgGn%':
                self.assertRaises(ValueError, format, 0.0, format_spec)
                self.assertRaises(ValueError, format, 1.0, format_spec)
                self.assertRaises(ValueError, format, -1.0, format_spec)
                self.assertRaises(ValueError, format, 1e100, format_spec)
                self.assertRaises(ValueError, format, -1e100, format_spec)
                self.assertRaises(ValueError, format, 1e-100, format_spec)
                self.assertRaises(ValueError, format, -1e-100, format_spec)

        # issue 3382
        self.assertEqual(format(NAN, 'f'), 'nan')
        self.assertEqual(format(NAN, 'F'), 'NAN')
        self.assertEqual(format(INF, 'f'), 'inf')
        self.assertEqual(format(INF, 'F'), 'INF')

    @support.requires_IEEE_754
    def test_format_testfile(self):
        with open(format_testfile) as testfile:
            for line in testfile:
                if line.startswith('--'):
                    continue
                line = line.strip()
                if not line:
                    continue

                lhs, rhs = map(str.strip, line.split('->'))
                fmt, arg = lhs.split()
                self.assertEqual(fmt % float(arg), rhs)
                self.assertEqual(fmt % -float(arg), '-' + rhs)

    def test_issue5864(self):
        self.assertEqual(format(123.456, '.4'), '123.5')
        self.assertEqual(format(1234.56, '.4'), '1.235e+03')
        self.assertEqual(format(12345.6, '.4'), '1.235e+04')

    def test_issue35560(self):
        self.assertEqual(format(123.0, '00'), '123.0')
        self.assertEqual(format(123.34, '00f'), '123.340000')
        self.assertEqual(format(123.34, '00e'), '1.233400e+02')
        self.assertEqual(format(123.34, '00g'), '123.34')
        self.assertEqual(format(123.34, '00.10f'), '123.3400000000')
        self.assertEqual(format(123.34, '00.10e'), '1.2334000000e+02')
        self.assertEqual(format(123.34, '00.10g'), '123.34')
        self.assertEqual(format(123.34, '01f'), '123.340000')

        self.assertEqual(format(-123.0, '00'), '-123.0')
        self.assertEqual(format(-123.34, '00f'), '-123.340000')
        self.assertEqual(format(-123.34, '00e'), '-1.233400e+02')
        self.assertEqual(format(-123.34, '00g'), '-123.34')
        self.assertEqual(format(-123.34, '00.10f'), '-123.3400000000')
        self.assertEqual(format(-123.34, '00.10f'), '-123.3400000000')
        self.assertEqual(format(-123.34, '00.10e'), '-1.2334000000e+02')
        self.assertEqual(format(-123.34, '00.10g'), '-123.34')

class ReprTestCase(unittest.TestCase):
    def test_repr(self):
        with open(os.path.join(os.path.split(__file__)[0],
                  'floating_points.txt')) as floats_file:
            for line in floats_file:
                line = line.strip()
                if not line or line.startswith('#'):
                    continue
                v = eval(line)
                self.assertEqual(v, eval(repr(v)))

    @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
                         "applies only when using short float repr style")
    def test_short_repr(self):
        # test short float repr introduced in Python 3.1.  One aspect
        # of this repr is that we get some degree of str -> float ->
        # str roundtripping.  In particular, for any numeric string
        # containing 15 or fewer significant digits, those exact same
        # digits (modulo trailing zeros) should appear in the output.
        # No more repr(0.03) -> "0.029999999999999999"!

        test_strings = [
            # output always includes *either* a decimal point and at
            # least one digit after that point, or an exponent.
            '0.0',
            '1.0',
            '0.01',
            '0.02',
            '0.03',
            '0.04',
            '0.05',
            '1.23456789',
            '10.0',
            '100.0',
            # values >= 1e16 get an exponent...
            '1000000000000000.0',
            '9999999999999990.0',
            '1e+16',
            '1e+17',
            # ... and so do values < 1e-4
            '0.001',
            '0.001001',
            '0.00010000000000001',
            '0.0001',
            '9.999999999999e-05',
            '1e-05',
            # values designed to provoke failure if the FPU rounding
            # precision isn't set correctly
            '8.72293771110361e+25',
            '7.47005307342313e+26',
            '2.86438000439698e+28',
            '8.89142905246179e+28',
            '3.08578087079232e+35',
            ]

        for s in test_strings:
            negs = '-'+s
            self.assertEqual(s, repr(float(s)))
            self.assertEqual(negs, repr(float(negs)))
            # Since Python 3.2, repr and str are identical
            self.assertEqual(repr(float(s)), str(float(s)))
            self.assertEqual(repr(float(negs)), str(float(negs)))

@support.requires_IEEE_754
class RoundTestCase(unittest.TestCase):

    def test_inf_nan(self):
        self.assertRaises(OverflowError, round, INF)
        self.assertRaises(OverflowError, round, -INF)
        self.assertRaises(ValueError, round, NAN)
        self.assertRaises(TypeError, round, INF, 0.0)
        self.assertRaises(TypeError, round, -INF, 1.0)
        self.assertRaises(TypeError, round, NAN, "ceci n'est pas un integer")
        self.assertRaises(TypeError, round, -0.0, 1j)

    def test_large_n(self):
        for n in [324, 325, 400, 2**31-1, 2**31, 2**32, 2**100]:
            self.assertEqual(round(123.456, n), 123.456)
            self.assertEqual(round(-123.456, n), -123.456)
            self.assertEqual(round(1e300, n), 1e300)
            self.assertEqual(round(1e-320, n), 1e-320)
        self.assertEqual(round(1e150, 300), 1e150)
        self.assertEqual(round(1e300, 307), 1e300)
        self.assertEqual(round(-3.1415, 308), -3.1415)
        self.assertEqual(round(1e150, 309), 1e150)
        self.assertEqual(round(1.4e-315, 315), 1e-315)

    def test_small_n(self):
        for n in [-308, -309, -400, 1-2**31, -2**31, -2**31-1, -2**100]:
            self.assertEqual(round(123.456, n), 0.0)
            self.assertEqual(round(-123.456, n), -0.0)
            self.assertEqual(round(1e300, n), 0.0)
            self.assertEqual(round(1e-320, n), 0.0)

    def test_overflow(self):
        self.assertRaises(OverflowError, round, 1.6e308, -308)
        self.assertRaises(OverflowError, round, -1.7e308, -308)

    @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
                         "applies only when using short float repr style")
    def test_previous_round_bugs(self):
        # particular cases that have occurred in bug reports
        self.assertEqual(round(562949953421312.5, 1),
                          562949953421312.5)
        self.assertEqual(round(56294995342131.5, 3),
                         56294995342131.5)
        # round-half-even
        self.assertEqual(round(25.0, -1), 20.0)
        self.assertEqual(round(35.0, -1), 40.0)
        self.assertEqual(round(45.0, -1), 40.0)
        self.assertEqual(round(55.0, -1), 60.0)
        self.assertEqual(round(65.0, -1), 60.0)
        self.assertEqual(round(75.0, -1), 80.0)
        self.assertEqual(round(85.0, -1), 80.0)
        self.assertEqual(round(95.0, -1), 100.0)

    @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
                         "applies only when using short float repr style")
    def test_matches_float_format(self):
        # round should give the same results as float formatting
        for i in range(500):
            x = i/1000.
            self.assertEqual(float(format(x, '.0f')), round(x, 0))
            self.assertEqual(float(format(x, '.1f')), round(x, 1))
            self.assertEqual(float(format(x, '.2f')), round(x, 2))
            self.assertEqual(float(format(x, '.3f')), round(x, 3))

        for i in range(5, 5000, 10):
            x = i/1000.
            self.assertEqual(float(format(x, '.0f')), round(x, 0))
            self.assertEqual(float(format(x, '.1f')), round(x, 1))
            self.assertEqual(float(format(x, '.2f')), round(x, 2))
            self.assertEqual(float(format(x, '.3f')), round(x, 3))

        for i in range(500):
            x = random.random()
            self.assertEqual(float(format(x, '.0f')), round(x, 0))
            self.assertEqual(float(format(x, '.1f')), round(x, 1))
            self.assertEqual(float(format(x, '.2f')), round(x, 2))
            self.assertEqual(float(format(x, '.3f')), round(x, 3))

    def test_format_specials(self):
        # Test formatting of nans and infs.

        def test(fmt, value, expected):
            # Test with both % and format().
            self.assertEqual(fmt % value, expected, fmt)
            fmt = fmt[1:] # strip off the %
            self.assertEqual(format(value, fmt), expected, fmt)

        for fmt in ['%e', '%f', '%g', '%.0e', '%.6f', '%.20g',
                    '%#e', '%#f', '%#g', '%#.20e', '%#.15f', '%#.3g']:
            pfmt = '%+' + fmt[1:]
            sfmt = '% ' + fmt[1:]
            test(fmt, INF, 'inf')
            test(fmt, -INF, '-inf')
            test(fmt, NAN, 'nan')
            test(fmt, -NAN, 'nan')
            # When asking for a sign, it's always provided. nans are
            #  always positive.
            test(pfmt, INF, '+inf')
            test(pfmt, -INF, '-inf')
            test(pfmt, NAN, '+nan')
            test(pfmt, -NAN, '+nan')
            # When using ' ' for a sign code, only infs can be negative.
            #  Others have a space.
            test(sfmt, INF, ' inf')
            test(sfmt, -INF, '-inf')
            test(sfmt, NAN, ' nan')
            test(sfmt, -NAN, ' nan')

    def test_None_ndigits(self):
        for x in round(1.23), round(1.23, None), round(1.23, ndigits=None):
            self.assertEqual(x, 1)
            self.assertIsInstance(x, int)
        for x in round(1.78), round(1.78, None), round(1.78, ndigits=None):
            self.assertEqual(x, 2)
            self.assertIsInstance(x, int)


# Beginning with Python 2.6 float has cross platform compatible
# ways to create and represent inf and nan
class InfNanTest(unittest.TestCase):
    def test_inf_from_str(self):
        self.assertTrue(isinf(float("inf")))
        self.assertTrue(isinf(float("+inf")))
        self.assertTrue(isinf(float("-inf")))
        self.assertTrue(isinf(float("infinity")))
        self.assertTrue(isinf(float("+infinity")))
        self.assertTrue(isinf(float("-infinity")))

        self.assertEqual(repr(float("inf")), "inf")
        self.assertEqual(repr(float("+inf")), "inf")
        self.assertEqual(repr(float("-inf")), "-inf")
        self.assertEqual(repr(float("infinity")), "inf")
        self.assertEqual(repr(float("+infinity")), "inf")
        self.assertEqual(repr(float("-infinity")), "-inf")

        self.assertEqual(repr(float("INF")), "inf")
        self.assertEqual(repr(float("+Inf")), "inf")
        self.assertEqual(repr(float("-iNF")), "-inf")
        self.assertEqual(repr(float("Infinity")), "inf")
        self.assertEqual(repr(float("+iNfInItY")), "inf")
        self.assertEqual(repr(float("-INFINITY")), "-inf")

        self.assertEqual(str(float("inf")), "inf")
        self.assertEqual(str(float("+inf")), "inf")
        self.assertEqual(str(float("-inf")), "-inf")
        self.assertEqual(str(float("infinity")), "inf")
        self.assertEqual(str(float("+infinity")), "inf")
        self.assertEqual(str(float("-infinity")), "-inf")

        self.assertRaises(ValueError, float, "info")
        self.assertRaises(ValueError, float, "+info")
        self.assertRaises(ValueError, float, "-info")
        self.assertRaises(ValueError, float, "in")
        self.assertRaises(ValueError, float, "+in")
        self.assertRaises(ValueError, float, "-in")
        self.assertRaises(ValueError, float, "infinit")
        self.assertRaises(ValueError, float, "+Infin")
        self.assertRaises(ValueError, float, "-INFI")
        self.assertRaises(ValueError, float, "infinitys")

        self.assertRaises(ValueError, float, "++Inf")
        self.assertRaises(ValueError, float, "-+inf")
        self.assertRaises(ValueError, float, "+-infinity")
        self.assertRaises(ValueError, float, "--Infinity")

    def test_inf_as_str(self):
        self.assertEqual(repr(1e300 * 1e300), "inf")
        self.assertEqual(repr(-1e300 * 1e300), "-inf")

        self.assertEqual(str(1e300 * 1e300), "inf")
        self.assertEqual(str(-1e300 * 1e300), "-inf")

    def test_nan_from_str(self):
        self.assertTrue(isnan(float("nan")))
        self.assertTrue(isnan(float("+nan")))
        self.assertTrue(isnan(float("-nan")))

        self.assertEqual(repr(float("nan")), "nan")
        self.assertEqual(repr(float("+nan")), "nan")
        self.assertEqual(repr(float("-nan")), "nan")

        self.assertEqual(repr(float("NAN")), "nan")
        self.assertEqual(repr(float("+NAn")), "nan")
        self.assertEqual(repr(float("-NaN")), "nan")

        self.assertEqual(str(float("nan")), "nan")
        self.assertEqual(str(float("+nan")), "nan")
        self.assertEqual(str(float("-nan")), "nan")

        self.assertRaises(ValueError, float, "nana")
        self.assertRaises(ValueError, float, "+nana")
        self.assertRaises(ValueError, float, "-nana")
        self.assertRaises(ValueError, float, "na")
        self.assertRaises(ValueError, float, "+na")
        self.assertRaises(ValueError, float, "-na")

        self.assertRaises(ValueError, float, "++nan")
        self.assertRaises(ValueError, float, "-+NAN")
        self.assertRaises(ValueError, float, "+-NaN")
        self.assertRaises(ValueError, float, "--nAn")

    def test_nan_as_str(self):
        self.assertEqual(repr(1e300 * 1e300 * 0), "nan")
        self.assertEqual(repr(-1e300 * 1e300 * 0), "nan")

        self.assertEqual(str(1e300 * 1e300 * 0), "nan")
        self.assertEqual(str(-1e300 * 1e300 * 0), "nan")

    def test_inf_signs(self):
        self.assertEqual(copysign(1.0, float('inf')), 1.0)
        self.assertEqual(copysign(1.0, float('-inf')), -1.0)

    @unittest.skipUnless(getattr(sys, 'float_repr_style', '') == 'short',
                         "applies only when using short float repr style")
    def test_nan_signs(self):
        # When using the dtoa.c code, the sign of float('nan') should
        # be predictable.
        self.assertEqual(copysign(1.0, float('nan')), 1.0)
        self.assertEqual(copysign(1.0, float('-nan')), -1.0)


fromHex = float.fromhex
toHex = float.hex
class HexFloatTestCase(unittest.TestCase):
    MAX = fromHex('0x.fffffffffffff8p+1024')  # max normal
    MIN = fromHex('0x1p-1022')                # min normal
    TINY = fromHex('0x0.0000000000001p-1022') # min subnormal
    EPS = fromHex('0x0.0000000000001p0') # diff between 1.0 and next float up

    def identical(self, x, y):
        # check that floats x and y are identical, or that both
        # are NaNs
        if isnan(x) or isnan(y):
            if isnan(x) == isnan(y):
                return
        elif x == y and (x != 0.0 or copysign(1.0, x) == copysign(1.0, y)):
            return
        self.fail('%r not identical to %r' % (x, y))

    def test_ends(self):
        self.identical(self.MIN, ldexp(1.0, -1022))
        self.identical(self.TINY, ldexp(1.0, -1074))
        self.identical(self.EPS, ldexp(1.0, -52))
        self.identical(self.MAX, 2.*(ldexp(1.0, 1023) - ldexp(1.0, 970)))

    def test_invalid_inputs(self):
        invalid_inputs = [
            'infi',   # misspelt infinities and nans
            '-Infinit',
            '++inf',
            '-+Inf',
            '--nan',
            '+-NaN',
            'snan',
            'NaNs',
            'nna',
            'an',
            'nf',
            'nfinity',
            'inity',
            'iinity',
            '0xnan',
            '',
            ' ',
            'x1.0p0',
            '0xX1.0p0',
            '+ 0x1.0p0', # internal whitespace
            '- 0x1.0p0',
            '0 x1.0p0',
            '0x 1.0p0',
            '0x1 2.0p0',
            '+0x1 .0p0',
            '0x1. 0p0',
            '-0x1.0 1p0',
            '-0x1.0 p0',
            '+0x1.0p +0',
            '0x1.0p -0',
            '0x1.0p 0',
            '+0x1.0p+ 0',
            '-0x1.0p- 0',
            '++0x1.0p-0', # double signs
            '--0x1.0p0',
            '+-0x1.0p+0',
            '-+0x1.0p0',
            '0x1.0p++0',
            '+0x1.0p+-0',
            '-0x1.0p-+0',
            '0x1.0p--0',
            '0x1.0.p0',
            '0x.p0', # no hex digits before or after point
            '0x1,p0', # wrong decimal point character
            '0x1pa',
            '0x1p\uff10',  # fullwidth Unicode digits
            '\uff10x1p0',
            '0x\uff11p0',
            '0x1.\uff10p0',
            '0x1p0 \n 0x2p0',
            '0x1p0\0 0x1p0',  # embedded null byte is not end of string
            ]
        for x in invalid_inputs:
            try:
                result = fromHex(x)
            except ValueError:
                pass
            else:
                self.fail('Expected float.fromhex(%r) to raise ValueError; '
                          'got %r instead' % (x, result))


    def test_whitespace(self):
        value_pairs = [
            ('inf', INF),
            ('-Infinity', -INF),
            ('nan', NAN),
            ('1.0', 1.0),
            ('-0x.2', -0.125),
            ('-0.0', -0.0)
            ]
        whitespace = [
            '',
            ' ',
            '\t',
            '\n',
            '\n \t',
            '\f',
            '\v',
            '\r'
            ]
        for inp, expected in value_pairs:
            for lead in whitespace:
                for trail in whitespace:
                    got = fromHex(lead + inp + trail)
                    self.identical(got, expected)


    def test_from_hex(self):
        MIN = self.MIN
        MAX = self.MAX
        TINY = self.TINY
        EPS = self.EPS

        # two spellings of infinity, with optional signs; case-insensitive
        self.identical(fromHex('inf'), INF)
        self.identical(fromHex('+Inf'), INF)
        self.identical(fromHex('-INF'), -INF)
        self.identical(fromHex('iNf'), INF)
        self.identical(fromHex('Infinity'), INF)
        self.identical(fromHex('+INFINITY'), INF)
        self.identical(fromHex('-infinity'), -INF)
        self.identical(fromHex('-iNFiNitY'), -INF)

        # nans with optional sign; case insensitive
        self.identical(fromHex('nan'), NAN)
        self.identical(fromHex('+NaN'), NAN)
        self.identical(fromHex('-NaN'), NAN)
        self.identical(fromHex('-nAN'), NAN)

        # variations in input format
        self.identical(fromHex('1'), 1.0)
        self.identical(fromHex('+1'), 1.0)
        self.identical(fromHex('1.'), 1.0)
        self.identical(fromHex('1.0'), 1.0)
        self.identical(fromHex('1.0p0'), 1.0)
        self.identical(fromHex('01'), 1.0)
        self.identical(fromHex('01.'), 1.0)
        self.identical(fromHex('0x1'), 1.0)
        self.identical(fromHex('0x1.'), 1.0)
        self.identical(fromHex('0x1.0'), 1.0)
        self.identical(fromHex('+0x1.0'), 1.0)
        self.identical(fromHex('0x1p0'), 1.0)
        self.identical(fromHex('0X1p0'), 1.0)
        self.identical(fromHex('0X1P0'), 1.0)
        self.identical(fromHex('0x1P0'), 1.0)
        self.identical(fromHex('0x1.p0'), 1.0)
        self.identical(fromHex('0x1.0p0'), 1.0)
        self.identical(fromHex('0x.1p4'), 1.0)
        self.identical(fromHex('0x.1p04'), 1.0)
        self.identical(fromHex('0x.1p004'), 1.0)
        self.identical(fromHex('0x1p+0'), 1.0)
        self.identical(fromHex('0x1P-0'), 1.0)
        self.identical(fromHex('+0x1p0'), 1.0)
        self.identical(fromHex('0x01p0'), 1.0)
        self.identical(fromHex('0x1p00'), 1.0)
        self.identical(fromHex(' 0x1p0 '), 1.0)
        self.identical(fromHex('\n 0x1p0'), 1.0)
        self.identical(fromHex('0x1p0 \t'), 1.0)
        self.identical(fromHex('0xap0'), 10.0)
        self.identical(fromHex('0xAp0'), 10.0)
        self.identical(fromHex('0xaP0'), 10.0)
        self.identical(fromHex('0xAP0'), 10.0)
        self.identical(fromHex('0xbep0'), 190.0)
        self.identical(fromHex('0xBep0'), 190.0)
        self.identical(fromHex('0xbEp0'), 190.0)
        self.identical(fromHex('0XBE0P-4'), 190.0)
        self.identical(fromHex('0xBEp0'), 190.0)
        self.identical(fromHex('0xB.Ep4'), 190.0)
        self.identical(fromHex('0x.BEp8'), 190.0)
        self.identical(fromHex('0x.0BEp12'), 190.0)

        # moving the point around
        pi = fromHex('0x1.921fb54442d18p1')
        self.identical(fromHex('0x.006487ed5110b46p11'), pi)
        self.identical(fromHex('0x.00c90fdaa22168cp10'), pi)
        self.identical(fromHex('0x.01921fb54442d18p9'), pi)
        self.identical(fromHex('0x.03243f6a8885a3p8'), pi)
        self.identical(fromHex('0x.06487ed5110b46p7'), pi)
        self.identical(fromHex('0x.0c90fdaa22168cp6'), pi)
        self.identical(fromHex('0x.1921fb54442d18p5'), pi)
        self.identical(fromHex('0x.3243f6a8885a3p4'), pi)
        self.identical(fromHex('0x.6487ed5110b46p3'), pi)
        self.identical(fromHex('0x.c90fdaa22168cp2'), pi)
        self.identical(fromHex('0x1.921fb54442d18p1'), pi)
        self.identical(fromHex('0x3.243f6a8885a3p0'), pi)
        self.identical(fromHex('0x6.487ed5110b46p-1'), pi)
        self.identical(fromHex('0xc.90fdaa22168cp-2'), pi)
        self.identical(fromHex('0x19.21fb54442d18p-3'), pi)
        self.identical(fromHex('0x32.43f6a8885a3p-4'), pi)
        self.identical(fromHex('0x64.87ed5110b46p-5'), pi)
        self.identical(fromHex('0xc9.0fdaa22168cp-6'), pi)
        self.identical(fromHex('0x192.1fb54442d18p-7'), pi)
        self.identical(fromHex('0x324.3f6a8885a3p-8'), pi)
        self.identical(fromHex('0x648.7ed5110b46p-9'), pi)
        self.identical(fromHex('0xc90.fdaa22168cp-10'), pi)
        self.identical(fromHex('0x1921.fb54442d18p-11'), pi)
        # ...
        self.identical(fromHex('0x1921fb54442d1.8p-47'), pi)
        self.identical(fromHex('0x3243f6a8885a3p-48'), pi)
        self.identical(fromHex('0x6487ed5110b46p-49'), pi)
        self.identical(fromHex('0xc90fdaa22168cp-50'), pi)
        self.identical(fromHex('0x1921fb54442d18p-51'), pi)
        self.identical(fromHex('0x3243f6a8885a30p-52'), pi)
        self.identical(fromHex('0x6487ed5110b460p-53'), pi)
        self.identical(fromHex('0xc90fdaa22168c0p-54'), pi)
        self.identical(fromHex('0x1921fb54442d180p-55'), pi)


        # results that should overflow...
        self.assertRaises(OverflowError, fromHex, '-0x1p1024')
        self.assertRaises(OverflowError, fromHex, '0x1p+1025')
        self.assertRaises(OverflowError, fromHex, '+0X1p1030')
        self.assertRaises(OverflowError, fromHex, '-0x1p+1100')
        self.assertRaises(OverflowError, fromHex, '0X1p123456789123456789')
        self.assertRaises(OverflowError, fromHex, '+0X.8p+1025')
        self.assertRaises(OverflowError, fromHex, '+0x0.8p1025')
        self.assertRaises(OverflowError, fromHex, '-0x0.4p1026')
        self.assertRaises(OverflowError, fromHex, '0X2p+1023')
        self.assertRaises(OverflowError, fromHex, '0x2.p1023')
        self.assertRaises(OverflowError, fromHex, '-0x2.0p+1023')
        self.assertRaises(OverflowError, fromHex, '+0X4p+1022')
        self.assertRaises(OverflowError, fromHex, '0x1.ffffffffffffffp+1023')
        self.assertRaises(OverflowError, fromHex, '-0X1.fffffffffffff9p1023')
        self.assertRaises(OverflowError, fromHex, '0X1.fffffffffffff8p1023')
        self.assertRaises(OverflowError, fromHex, '+0x3.fffffffffffffp1022')
        self.assertRaises(OverflowError, fromHex, '0x3fffffffffffffp+970')
        self.assertRaises(OverflowError, fromHex, '0x10000000000000000p960')
        self.assertRaises(OverflowError, fromHex, '-0Xffffffffffffffffp960')

        # ...and those that round to +-max float
        self.identical(fromHex('+0x1.fffffffffffffp+1023'), MAX)
        self.identical(fromHex('-0X1.fffffffffffff7p1023'), -MAX)
        self.identical(fromHex('0X1.fffffffffffff7fffffffffffffp1023'), MAX)

        # zeros
        self.identical(fromHex('0x0p0'), 0.0)
        self.identical(fromHex('0x0p1000'), 0.0)
        self.identical(fromHex('-0x0p1023'), -0.0)
        self.identical(fromHex('0X0p1024'), 0.0)
        self.identical(fromHex('-0x0p1025'), -0.0)
        self.identical(fromHex('0X0p2000'), 0.0)
        self.identical(fromHex('0x0p123456789123456789'), 0.0)
        self.identical(fromHex('-0X0p-0'), -0.0)
        self.identical(fromHex('-0X0p-1000'), -0.0)
        self.identical(fromHex('0x0p-1023'), 0.0)
        self.identical(fromHex('-0X0p-1024'), -0.0)
        self.identical(fromHex('-0x0p-1025'), -0.0)
        self.identical(fromHex('-0x0p-1072'), -0.0)
        self.identical(fromHex('0X0p-1073'), 0.0)
        self.identical(fromHex('-0x0p-1074'), -0.0)
        self.identical(fromHex('0x0p-1075'), 0.0)
        self.identical(fromHex('0X0p-1076'), 0.0)
        self.identical(fromHex('-0X0p-2000'), -0.0)
        self.identical(fromHex('-0x0p-123456789123456789'), -0.0)

        # values that should underflow to 0
        self.identical(fromHex('0X1p-1075'), 0.0)
        self.identical(fromHex('-0X1p-1075'), -0.0)
        self.identical(fromHex('-0x1p-123456789123456789'), -0.0)
        self.identical(fromHex('0x1.00000000000000001p-1075'), TINY)
        self.identical(fromHex('-0x1.1p-1075'), -TINY)
        self.identical(fromHex('0x1.fffffffffffffffffp-1075'), TINY)

        # check round-half-even is working correctly near 0 ...
        self.identical(fromHex('0x1p-1076'), 0.0)
        self.identical(fromHex('0X2p-1076'), 0.0)
        self.identical(fromHex('0X3p-1076'), TINY)
        self.identical(fromHex('0x4p-1076'), TINY)
        self.identical(fromHex('0X5p-1076'), TINY)
        self.identical(fromHex('0X6p-1076'), 2*TINY)
        self.identical(fromHex('0x7p-1076'), 2*TINY)
        self.identical(fromHex('0X8p-1076'), 2*TINY)
        self.identical(fromHex('0X9p-1076'), 2*TINY)
        self.identical(fromHex('0xap-1076'), 2*TINY)
        self.identical(fromHex('0Xbp-1076'), 3*TINY)
        self.identical(fromHex('0xcp-1076'), 3*TINY)
        self.identical(fromHex('0Xdp-1076'), 3*TINY)
        self.identical(fromHex('0Xep-1076'), 4*TINY)
        self.identical(fromHex('0xfp-1076'), 4*TINY)
        self.identical(fromHex('0x10p-1076'), 4*TINY)
        self.identical(fromHex('-0x1p-1076'), -0.0)
        self.identical(fromHex('-0X2p-1076'), -0.0)
        self.identical(fromHex('-0x3p-1076'), -TINY)
        self.identical(fromHex('-0X4p-1076'), -TINY)
        self.identical(fromHex('-0x5p-1076'), -TINY)
        self.identical(fromHex('-0x6p-1076'), -2*TINY)
        self.identical(fromHex('-0X7p-1076'), -2*TINY)
        self.identical(fromHex('-0X8p-1076'), -2*TINY)
        self.identical(fromHex('-0X9p-1076'), -2*TINY)
        self.identical(fromHex('-0Xap-1076'), -2*TINY)
        self.identical(fromHex('-0xbp-1076'), -3*TINY)
        self.identical(fromHex('-0xcp-1076'), -3*TINY)
        self.identical(fromHex('-0Xdp-1076'), -3*TINY)
        self.identical(fromHex('-0xep-1076'), -4*TINY)
        self.identical(fromHex('-0Xfp-1076'), -4*TINY)
        self.identical(fromHex('-0X10p-1076'), -4*TINY)

        # ... and near MIN ...
        self.identical(fromHex('0x0.ffffffffffffd6p-1022'), MIN-3*TINY)
        self.identical(fromHex('0x0.ffffffffffffd8p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffdap-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffdcp-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffdep-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffe0p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffe2p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffe4p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffe6p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffe8p-1022'), MIN-2*TINY)
        self.identical(fromHex('0x0.ffffffffffffeap-1022'), MIN-TINY)
        self.identical(fromHex('0x0.ffffffffffffecp-1022'), MIN-TINY)
        self.identical(fromHex('0x0.ffffffffffffeep-1022'), MIN-TINY)
        self.identical(fromHex('0x0.fffffffffffff0p-1022'), MIN-TINY)
        self.identical(fromHex('0x0.fffffffffffff2p-1022'), MIN-TINY)
        self.identical(fromHex('0x0.fffffffffffff4p-1022'), MIN-TINY)
        self.identical(fromHex('0x0.fffffffffffff6p-1022'), MIN-TINY)
        self.identical(fromHex('0x0.fffffffffffff8p-1022'), MIN)
        self.identical(fromHex('0x0.fffffffffffffap-1022'), MIN)
        self.identical(fromHex('0x0.fffffffffffffcp-1022'), MIN)
        self.identical(fromHex('0x0.fffffffffffffep-1022'), MIN)
        self.identical(fromHex('0x1.00000000000000p-1022'), MIN)
        self.identical(fromHex('0x1.00000000000002p-1022'), MIN)
        self.identical(fromHex('0x1.00000000000004p-1022'), MIN)
        self.identical(fromHex('0x1.00000000000006p-1022'), MIN)
        self.identical(fromHex('0x1.00000000000008p-1022'), MIN)
        self.identical(fromHex('0x1.0000000000000ap-1022'), MIN+TINY)
        self.identical(fromHex('0x1.0000000000000cp-1022'), MIN+TINY)
        self.identical(fromHex('0x1.0000000000000ep-1022'), MIN+TINY)
        self.identical(fromHex('0x1.00000000000010p-1022'), MIN+TINY)
        self.identical(fromHex('0x1.00000000000012p-1022'), MIN+TINY)
        self.identical(fromHex('0x1.00000000000014p-1022'), MIN+TINY)
        self.identical(fromHex('0x1.00000000000016p-1022'), MIN+TINY)
        self.identical(fromHex('0x1.00000000000018p-1022'), MIN+2*TINY)

        # ... and near 1.0.
        self.identical(fromHex('0x0.fffffffffffff0p0'), 1.0-EPS)
        self.identical(fromHex('0x0.fffffffffffff1p0'), 1.0-EPS)
        self.identical(fromHex('0X0.fffffffffffff2p0'), 1.0-EPS)
        self.identical(fromHex('0x0.fffffffffffff3p0'), 1.0-EPS)
        self.identical(fromHex('0X0.fffffffffffff4p0'), 1.0-EPS)
        self.identical(fromHex('0X0.fffffffffffff5p0'), 1.0-EPS/2)
        self.identical(fromHex('0X0.fffffffffffff6p0'), 1.0-EPS/2)
        self.identical(fromHex('0x0.fffffffffffff7p0'), 1.0-EPS/2)
        self.identical(fromHex('0x0.fffffffffffff8p0'), 1.0-EPS/2)
        self.identical(fromHex('0X0.fffffffffffff9p0'), 1.0-EPS/2)
        self.identical(fromHex('0X0.fffffffffffffap0'), 1.0-EPS/2)
        self.identical(fromHex('0x0.fffffffffffffbp0'), 1.0-EPS/2)
        self.identical(fromHex('0X0.fffffffffffffcp0'), 1.0)
        self.identical(fromHex('0x0.fffffffffffffdp0'), 1.0)
        self.identical(fromHex('0X0.fffffffffffffep0'), 1.0)
        self.identical(fromHex('0x0.ffffffffffffffp0'), 1.0)
        self.identical(fromHex('0X1.00000000000000p0'), 1.0)
        self.identical(fromHex('0X1.00000000000001p0'), 1.0)
        self.identical(fromHex('0x1.00000000000002p0'), 1.0)
        self.identical(fromHex('0X1.00000000000003p0'), 1.0)
        self.identical(fromHex('0x1.00000000000004p0'), 1.0)
        self.identical(fromHex('0X1.00000000000005p0'), 1.0)
        self.identical(fromHex('0X1.00000000000006p0'), 1.0)
        self.identical(fromHex('0X1.00000000000007p0'), 1.0)
        self.identical(fromHex('0x1.00000000000007ffffffffffffffffffffp0'),
                       1.0)
        self.identical(fromHex('0x1.00000000000008p0'), 1.0)
        self.identical(fromHex('0x1.00000000000008000000000000000001p0'),
                       1+EPS)
        self.identical(fromHex('0X1.00000000000009p0'), 1.0+EPS)
        self.identical(fromHex('0x1.0000000000000ap0'), 1.0+EPS)
        self.identical(fromHex('0x1.0000000000000bp0'), 1.0+EPS)
        self.identical(fromHex('0X1.0000000000000cp0'), 1.0+EPS)
        self.identical(fromHex('0x1.0000000000000dp0'), 1.0+EPS)
        self.identical(fromHex('0x1.0000000000000ep0'), 1.0+EPS)
        self.identical(fromHex('0X1.0000000000000fp0'), 1.0+EPS)
        self.identical(fromHex('0x1.00000000000010p0'), 1.0+EPS)
        self.identical(fromHex('0X1.00000000000011p0'), 1.0+EPS)
        self.identical(fromHex('0x1.00000000000012p0'), 1.0+EPS)
        self.identical(fromHex('0X1.00000000000013p0'), 1.0+EPS)
        self.identical(fromHex('0X1.00000000000014p0'), 1.0+EPS)
        self.identical(fromHex('0x1.00000000000015p0'), 1.0+EPS)
        self.identical(fromHex('0x1.00000000000016p0'), 1.0+EPS)
        self.identical(fromHex('0X1.00000000000017p0'), 1.0+EPS)
        self.identical(fromHex('0x1.00000000000017ffffffffffffffffffffp0'),
                       1.0+EPS)
        self.identical(fromHex('0x1.00000000000018p0'), 1.0+2*EPS)
        self.identical(fromHex('0X1.00000000000018000000000000000001p0'),
                       1.0+2*EPS)
        self.identical(fromHex('0x1.00000000000019p0'), 1.0+2*EPS)
        self.identical(fromHex('0X1.0000000000001ap0'), 1.0+2*EPS)
        self.identical(fromHex('0X1.0000000000001bp0'), 1.0+2*EPS)
        self.identical(fromHex('0x1.0000000000001cp0'), 1.0+2*EPS)
        self.identical(fromHex('0x1.0000000000001dp0'), 1.0+2*EPS)
        self.identical(fromHex('0x1.0000000000001ep0'), 1.0+2*EPS)
        self.identical(fromHex('0X1.0000000000001fp0'), 1.0+2*EPS)
        self.identical(fromHex('0x1.00000000000020p0'), 1.0+2*EPS)

        # Regression test for a corner-case bug reported in b.p.o. 44954
        self.identical(fromHex('0x.8p-1074'), 0.0)
        self.identical(fromHex('0x.80p-1074'), 0.0)
        self.identical(fromHex('0x.81p-1074'), TINY)
        self.identical(fromHex('0x8p-1078'), 0.0)
        self.identical(fromHex('0x8.0p-1078'), 0.0)
        self.identical(fromHex('0x8.1p-1078'), TINY)
        self.identical(fromHex('0x80p-1082'), 0.0)
        self.identical(fromHex('0x81p-1082'), TINY)
        self.identical(fromHex('.8p-1074'), 0.0)
        self.identical(fromHex('8p-1078'), 0.0)
        self.identical(fromHex('-.8p-1074'), -0.0)
        self.identical(fromHex('+8p-1078'), 0.0)

    def test_roundtrip(self):
        def roundtrip(x):
            return fromHex(toHex(x))

        for x in [NAN, INF, self.MAX, self.MIN, self.MIN-self.TINY, self.TINY, 0.0]:
            self.identical(x, roundtrip(x))
            self.identical(-x, roundtrip(-x))

        # fromHex(toHex(x)) should exactly recover x, for any non-NaN float x.
        import random
        for i in range(10000):
            e = random.randrange(-1200, 1200)
            m = random.random()
            s = random.choice([1.0, -1.0])
            try:
                x = s*ldexp(m, e)
            except OverflowError:
                pass
            else:
                self.identical(x, fromHex(toHex(x)))

    def test_subclass(self):
        class F(float):
            def __new__(cls, value):
                return float.__new__(cls, value + 1)

        f = F.fromhex((1.5).hex())
        self.assertIs(type(f), F)
        self.assertEqual(f, 2.5)

        class F2(float):
            def __init__(self, value):
                self.foo = 'bar'

        f = F2.fromhex((1.5).hex())
        self.assertIs(type(f), F2)
        self.assertEqual(f, 1.5)
        self.assertEqual(getattr(f, 'foo', 'none'), 'bar')


if __name__ == '__main__':
    unittest.main()

Youez - 2016 - github.com/yon3zu
LinuXploit