���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/Strawberry/c/lib/python3.9/test/decimaltestdata/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/Strawberry/c/lib/python3.9/test/decimaltestdata/dsBase.decTest
------------------------------------------------------------------------
-- dsBase.decTest -- base decSingle <--> string conversions           --
-- Copyright (c) IBM Corporation, 1981, 2008.  All rights reserved.   --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases"     --
-- at http://www2.hursley.ibm.com/decimal for the description of      --
-- these testcases.                                                   --
--                                                                    --
-- These testcases are experimental ('beta' versions), and they       --
-- may contain errors.  They are offered on an as-is basis.  In       --
-- particular, achieving the same results as the tests here is not    --
-- a guarantee that an implementation complies with any Standard      --
-- or specification.  The tests are not exhaustive.                   --
--                                                                    --
-- Please send comments, suggestions, and corrections to the author:  --
--   Mike Cowlishaw, IBM Fellow                                       --
--   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         --
--   mfc@uk.ibm.com                                                   --
------------------------------------------------------------------------
version: 2.59

-- This file tests base conversions from string to a decimal number
-- and back to a string (in Scientific form)

-- Note that unlike other operations the operand is subject to rounding
-- to conform to emax and precision settings (that is, numbers will
-- conform to rules and exponent will be in permitted range).  The
-- 'left hand side', therefore, may have numbers that cannot be
-- represented in a decSingle.  Some testcases go to the limit of the
-- next-wider format, and hence these testcases may also be used to
-- test narrowing and widening operations.

extended:    1
clamp:       1
precision:   7
maxExponent: 96
minExponent: -95
rounding:    half_even

dsbas001 toSci       0 -> 0
dsbas002 toSci       1 -> 1
dsbas003 toSci     1.0 -> 1.0
dsbas004 toSci    1.00 -> 1.00
dsbas005 toSci      10 -> 10
dsbas006 toSci    1000 -> 1000
dsbas007 toSci    10.0 -> 10.0
dsbas008 toSci    10.1 -> 10.1
dsbas009 toSci    10.4 -> 10.4
dsbas010 toSci    10.5 -> 10.5
dsbas011 toSci    10.6 -> 10.6
dsbas012 toSci    10.9 -> 10.9
dsbas013 toSci    11.0 -> 11.0
dsbas014 toSci  1.234 -> 1.234
dsbas015 toSci  0.123 -> 0.123
dsbas016 toSci  0.012 -> 0.012
dsbas017 toSci  -0    -> -0
dsbas018 toSci  -0.0  -> -0.0
dsbas019 toSci -00.00 -> -0.00

dsbas021 toSci     -1 -> -1
dsbas022 toSci   -1.0 -> -1.0
dsbas023 toSci   -0.1 -> -0.1
dsbas024 toSci   -9.1 -> -9.1
dsbas025 toSci   -9.11 -> -9.11
dsbas026 toSci   -9.119 -> -9.119
dsbas027 toSci   -9.999 -> -9.999

dsbas030 toSci  '1234.567'   -> '1234.567'
dsbas031 toSci  '1234.000'   -> '1234.000'
dsbas032 toSci   '1234912'   -> '1234912'
dsbas033 toSci   '0.00001234567'   -> '0.00001234567'
dsbas034 toSci  '0.000001234567'   -> '0.000001234567'
dsbas035 toSci '0.0000001234567'   -> '1.234567E-7'
dsbas036 toSci '0.00000001234567'  -> '1.234567E-8'

dsbas037 toSci '0.1234564'   -> '0.1234564'
dsbas038 toSci '0.1234565'   -> '0.1234565'

-- test finite bounds (Negs of, then 0, Ntiny, Nmin, other, Nmax)
dsbsn001 toSci -9.999999E+96 -> -9.999999E+96
dsbsn002 toSci -1E-95 -> -1E-95
dsbsn003 toSci -1E-101 -> -1E-101 Subnormal
dsbsn004 toSci -0 -> -0
dsbsn005 toSci +0 ->  0
dsbsn006 toSci +1E-101 ->  1E-101 Subnormal
dsbsn007 toSci +1E-95 ->  1E-95
dsbsn008 toSci +9.999999E+96 ->  9.999999E+96

-- String [many more examples are implicitly tested elsewhere]
-- strings without E cannot generate E in result
dsbas040 toSci "12"        -> '12'
dsbas041 toSci "-76"       -> '-76'
dsbas042 toSci "12.76"     -> '12.76'
dsbas043 toSci "+12.76"    -> '12.76'
dsbas044 toSci "012.76"    -> '12.76'
dsbas045 toSci "+0.003"    -> '0.003'
dsbas046 toSci "17."       -> '17'
dsbas047 toSci ".5"        -> '0.5'
dsbas048 toSci "044"       -> '44'
dsbas049 toSci "0044"      -> '44'
dsbas050 toSci "0.0005"      -> '0.0005'
dsbas051 toSci "00.00005"    -> '0.00005'
dsbas052 toSci "0.000005"    -> '0.000005'
dsbas053 toSci "0.0000050"   -> '0.0000050'
dsbas054 toSci "0.0000005"   -> '5E-7'
dsbas055 toSci "0.00000005"  -> '5E-8'
dsbas056 toSci "12678.54" -> '12678.54'
dsbas057 toSci "2678.543" -> '2678.543'
dsbas058 toSci "345678.5" -> '345678.5'
dsbas059 toSci "0678.5432" -> '678.5432'
dsbas060 toSci "678.5432" -> '678.5432'
dsbas061 toSci "+678.5432" -> '678.5432'
dsbas062 toSci "+0678.5432" -> '678.5432'
dsbas063 toSci "+00678.5432" -> '678.5432'
dsbas064 toSci "-678.5432"  -> '-678.5432'
dsbas065 toSci "-0678.5432"  -> '-678.5432'
dsbas066 toSci "-00678.5432"  -> '-678.5432'
-- examples
dsbas067 toSci "5E-6"        -> '0.000005'
dsbas068 toSci "50E-7"       -> '0.0000050'
dsbas069 toSci "5E-7"        -> '5E-7'

-- [No exotics as no Unicode]

-- rounded with dots in all (including edge) places
dsbas071 toSci  .1234567890123456  -> 0.1234568 Inexact Rounded
dsbas072 toSci  1.234567890123456  -> 1.234568 Inexact Rounded
dsbas073 toSci  12.34567890123456  -> 12.34568 Inexact Rounded
dsbas074 toSci  123.4567890123456  -> 123.4568 Inexact Rounded
dsbas075 toSci  1234.567890123456  -> 1234.568 Inexact Rounded
dsbas076 toSci  12345.67890123456  -> 12345.68 Inexact Rounded
dsbas077 toSci  123456.7890123456  -> 123456.8 Inexact Rounded
dsbas078 toSci  1234567.890123456  -> 1234568  Inexact Rounded
dsbas079 toSci  12345678.90123456  -> 1.234568E+7 Inexact Rounded
dsbas080 toSci  123456789.0123456  -> 1.234568E+8 Inexact Rounded
dsbas081 toSci  1234567890.123456  -> 1.234568E+9 Inexact Rounded
dsbas082 toSci  12345678901.23456  -> 1.234568E+10 Inexact Rounded
dsbas083 toSci  123456789012.3456  -> 1.234568E+11 Inexact Rounded
dsbas084 toSci  1234567890123.456  -> 1.234568E+12 Inexact Rounded
dsbas085 toSci  12345678901234.56  -> 1.234568E+13 Inexact Rounded
dsbas086 toSci  123456789012345.6  -> 1.234568E+14 Inexact Rounded
dsbas087 toSci  1234567890123456.  -> 1.234568E+15 Inexact Rounded
dsbas088 toSci  1234567890123456   -> 1.234568E+15 Inexact Rounded

-- Numbers with E
dsbas130 toSci "0.000E-1"  -> '0.0000'
dsbas131 toSci "0.000E-2"  -> '0.00000'
dsbas132 toSci "0.000E-3"  -> '0.000000'
dsbas133 toSci "0.000E-4"  -> '0E-7'
dsbas134 toSci "0.00E-2"   -> '0.0000'
dsbas135 toSci "0.00E-3"   -> '0.00000'
dsbas136 toSci "0.00E-4"   -> '0.000000'
dsbas137 toSci "0.00E-5"   -> '0E-7'
dsbas138 toSci "+0E+9"     -> '0E+9'
dsbas139 toSci "-0E+9"     -> '-0E+9'
dsbas140 toSci "1E+9"      -> '1E+9'
dsbas141 toSci "1e+09"     -> '1E+9'
dsbas142 toSci "1E+90"     -> '1E+90'
dsbas143 toSci "+1E+009"   -> '1E+9'
dsbas144 toSci "0E+9"      -> '0E+9'
dsbas145 toSci "1E+9"      -> '1E+9'
dsbas146 toSci "1E+09"     -> '1E+9'
dsbas147 toSci "1e+90"     -> '1E+90'
dsbas148 toSci "1E+009"    -> '1E+9'
dsbas149 toSci "000E+9"    -> '0E+9'
dsbas150 toSci "1E9"       -> '1E+9'
dsbas151 toSci "1e09"      -> '1E+9'
dsbas152 toSci "1E90"      -> '1E+90'
dsbas153 toSci "1E009"     -> '1E+9'
dsbas154 toSci "0E9"       -> '0E+9'
dsbas155 toSci "0.000e+0"  -> '0.000'
dsbas156 toSci "0.000E-1"  -> '0.0000'
dsbas157 toSci "4E+9"      -> '4E+9'
dsbas158 toSci "44E+9"     -> '4.4E+10'
dsbas159 toSci "0.73e-7"   -> '7.3E-8'
dsbas160 toSci "00E+9"     -> '0E+9'
dsbas161 toSci "00E-9"     -> '0E-9'
dsbas162 toSci "10E+9"     -> '1.0E+10'
dsbas163 toSci "10E+09"    -> '1.0E+10'
dsbas164 toSci "10e+90"    -> '1.0E+91'
dsbas165 toSci "10E+009"   -> '1.0E+10'
dsbas166 toSci "100e+9"    -> '1.00E+11'
dsbas167 toSci "100e+09"   -> '1.00E+11'
dsbas168 toSci "100E+90"   -> '1.00E+92'
dsbas169 toSci "100e+009"  -> '1.00E+11'

dsbas170 toSci "1.265"     -> '1.265'
dsbas171 toSci "1.265E-20" -> '1.265E-20'
dsbas172 toSci "1.265E-8"  -> '1.265E-8'
dsbas173 toSci "1.265E-4"  -> '0.0001265'
dsbas174 toSci "1.265E-3"  -> '0.001265'
dsbas175 toSci "1.265E-2"  -> '0.01265'
dsbas176 toSci "1.265E-1"  -> '0.1265'
dsbas177 toSci "1.265E-0"  -> '1.265'
dsbas178 toSci "1.265E+1"  -> '12.65'
dsbas179 toSci "1.265E+2"  -> '126.5'
dsbas180 toSci "1.265E+3"  -> '1265'
dsbas181 toSci "1.265E+4"  -> '1.265E+4'
dsbas182 toSci "1.265E+8"  -> '1.265E+8'
dsbas183 toSci "1.265E+20" -> '1.265E+20'

dsbas190 toSci "12.65"     -> '12.65'
dsbas191 toSci "12.65E-20" -> '1.265E-19'
dsbas192 toSci "12.65E-8"  -> '1.265E-7'
dsbas193 toSci "12.65E-4"  -> '0.001265'
dsbas194 toSci "12.65E-3"  -> '0.01265'
dsbas195 toSci "12.65E-2"  -> '0.1265'
dsbas196 toSci "12.65E-1"  -> '1.265'
dsbas197 toSci "12.65E-0"  -> '12.65'
dsbas198 toSci "12.65E+1"  -> '126.5'
dsbas199 toSci "12.65E+2"  -> '1265'
dsbas200 toSci "12.65E+3"  -> '1.265E+4'
dsbas201 toSci "12.65E+4"  -> '1.265E+5'
dsbas202 toSci "12.65E+8"  -> '1.265E+9'
dsbas203 toSci "12.65E+20" -> '1.265E+21'

dsbas210 toSci "126.5"     -> '126.5'
dsbas211 toSci "126.5E-20" -> '1.265E-18'
dsbas212 toSci "126.5E-8"  -> '0.000001265'
dsbas213 toSci "126.5E-4"  -> '0.01265'
dsbas214 toSci "126.5E-3"  -> '0.1265'
dsbas215 toSci "126.5E-2"  -> '1.265'
dsbas216 toSci "126.5E-1"  -> '12.65'
dsbas217 toSci "126.5E-0"  -> '126.5'
dsbas218 toSci "126.5E+1"  -> '1265'
dsbas219 toSci "126.5E+2"  -> '1.265E+4'
dsbas220 toSci "126.5E+3"  -> '1.265E+5'
dsbas221 toSci "126.5E+4"  -> '1.265E+6'
dsbas222 toSci "126.5E+8"  -> '1.265E+10'
dsbas223 toSci "126.5E+20" -> '1.265E+22'

dsbas230 toSci "1265"     -> '1265'
dsbas231 toSci "1265E-20" -> '1.265E-17'
dsbas232 toSci "1265E-8"  -> '0.00001265'
dsbas233 toSci "1265E-4"  -> '0.1265'
dsbas234 toSci "1265E-3"  -> '1.265'
dsbas235 toSci "1265E-2"  -> '12.65'
dsbas236 toSci "1265E-1"  -> '126.5'
dsbas237 toSci "1265E-0"  -> '1265'
dsbas238 toSci "1265E+1"  -> '1.265E+4'
dsbas239 toSci "1265E+2"  -> '1.265E+5'
dsbas240 toSci "1265E+3"  -> '1.265E+6'
dsbas241 toSci "1265E+4"  -> '1.265E+7'
dsbas242 toSci "1265E+8"  -> '1.265E+11'
dsbas243 toSci "1265E+20" -> '1.265E+23'

dsbas250 toSci "0.1265"     -> '0.1265'
dsbas251 toSci "0.1265E-20" -> '1.265E-21'
dsbas252 toSci "0.1265E-8"  -> '1.265E-9'
dsbas253 toSci "0.1265E-4"  -> '0.00001265'
dsbas254 toSci "0.1265E-3"  -> '0.0001265'
dsbas255 toSci "0.1265E-2"  -> '0.001265'
dsbas256 toSci "0.1265E-1"  -> '0.01265'
dsbas257 toSci "0.1265E-0"  -> '0.1265'
dsbas258 toSci "0.1265E+1"  -> '1.265'
dsbas259 toSci "0.1265E+2"  -> '12.65'
dsbas260 toSci "0.1265E+3"  -> '126.5'
dsbas261 toSci "0.1265E+4"  -> '1265'
dsbas262 toSci "0.1265E+8"  -> '1.265E+7'
dsbas263 toSci "0.1265E+20" -> '1.265E+19'

-- some more negative zeros [systematic tests below]
dsbas290 toSci "-0.000E-1"  -> '-0.0000'
dsbas291 toSci "-0.000E-2"  -> '-0.00000'
dsbas292 toSci "-0.000E-3"  -> '-0.000000'
dsbas293 toSci "-0.000E-4"  -> '-0E-7'
dsbas294 toSci "-0.00E-2"   -> '-0.0000'
dsbas295 toSci "-0.00E-3"   -> '-0.00000'
dsbas296 toSci "-0.0E-2"    -> '-0.000'
dsbas297 toSci "-0.0E-3"    -> '-0.0000'
dsbas298 toSci "-0E-2"      -> '-0.00'
dsbas299 toSci "-0E-3"      -> '-0.000'

-- Engineering notation tests
dsbas301  toSci 10e12  -> 1.0E+13
dsbas302  toEng 10e12  -> 10E+12
dsbas303  toSci 10e11  -> 1.0E+12
dsbas304  toEng 10e11  -> 1.0E+12
dsbas305  toSci 10e10  -> 1.0E+11
dsbas306  toEng 10e10  -> 100E+9
dsbas307  toSci 10e9   -> 1.0E+10
dsbas308  toEng 10e9   -> 10E+9
dsbas309  toSci 10e8   -> 1.0E+9
dsbas310  toEng 10e8   -> 1.0E+9
dsbas311  toSci 10e7   -> 1.0E+8
dsbas312  toEng 10e7   -> 100E+6
dsbas313  toSci 10e6   -> 1.0E+7
dsbas314  toEng 10e6   -> 10E+6
dsbas315  toSci 10e5   -> 1.0E+6
dsbas316  toEng 10e5   -> 1.0E+6
dsbas317  toSci 10e4   -> 1.0E+5
dsbas318  toEng 10e4   -> 100E+3
dsbas319  toSci 10e3   -> 1.0E+4
dsbas320  toEng 10e3   -> 10E+3
dsbas321  toSci 10e2   -> 1.0E+3
dsbas322  toEng 10e2   -> 1.0E+3
dsbas323  toSci 10e1   -> 1.0E+2
dsbas324  toEng 10e1   -> 100
dsbas325  toSci 10e0   -> 10
dsbas326  toEng 10e0   -> 10
dsbas327  toSci 10e-1  -> 1.0
dsbas328  toEng 10e-1  -> 1.0
dsbas329  toSci 10e-2  -> 0.10
dsbas330  toEng 10e-2  -> 0.10
dsbas331  toSci 10e-3  -> 0.010
dsbas332  toEng 10e-3  -> 0.010
dsbas333  toSci 10e-4  -> 0.0010
dsbas334  toEng 10e-4  -> 0.0010
dsbas335  toSci 10e-5  -> 0.00010
dsbas336  toEng 10e-5  -> 0.00010
dsbas337  toSci 10e-6  -> 0.000010
dsbas338  toEng 10e-6  -> 0.000010
dsbas339  toSci 10e-7  -> 0.0000010
dsbas340  toEng 10e-7  -> 0.0000010
dsbas341  toSci 10e-8  -> 1.0E-7
dsbas342  toEng 10e-8  -> 100E-9
dsbas343  toSci 10e-9  -> 1.0E-8
dsbas344  toEng 10e-9  -> 10E-9
dsbas345  toSci 10e-10 -> 1.0E-9
dsbas346  toEng 10e-10 -> 1.0E-9
dsbas347  toSci 10e-11 -> 1.0E-10
dsbas348  toEng 10e-11 -> 100E-12
dsbas349  toSci 10e-12 -> 1.0E-11
dsbas350  toEng 10e-12 -> 10E-12
dsbas351  toSci 10e-13 -> 1.0E-12
dsbas352  toEng 10e-13 -> 1.0E-12

dsbas361  toSci 7E12  -> 7E+12
dsbas362  toEng 7E12  -> 7E+12
dsbas363  toSci 7E11  -> 7E+11
dsbas364  toEng 7E11  -> 700E+9
dsbas365  toSci 7E10  -> 7E+10
dsbas366  toEng 7E10  -> 70E+9
dsbas367  toSci 7E9   -> 7E+9
dsbas368  toEng 7E9   -> 7E+9
dsbas369  toSci 7E8   -> 7E+8
dsbas370  toEng 7E8   -> 700E+6
dsbas371  toSci 7E7   -> 7E+7
dsbas372  toEng 7E7   -> 70E+6
dsbas373  toSci 7E6   -> 7E+6
dsbas374  toEng 7E6   -> 7E+6
dsbas375  toSci 7E5   -> 7E+5
dsbas376  toEng 7E5   -> 700E+3
dsbas377  toSci 7E4   -> 7E+4
dsbas378  toEng 7E4   -> 70E+3
dsbas379  toSci 7E3   -> 7E+3
dsbas380  toEng 7E3   -> 7E+3
dsbas381  toSci 7E2   -> 7E+2
dsbas382  toEng 7E2   -> 700
dsbas383  toSci 7E1   -> 7E+1
dsbas384  toEng 7E1   -> 70
dsbas385  toSci 7E0   -> 7
dsbas386  toEng 7E0   -> 7
dsbas387  toSci 7E-1  -> 0.7
dsbas388  toEng 7E-1  -> 0.7
dsbas389  toSci 7E-2  -> 0.07
dsbas390  toEng 7E-2  -> 0.07
dsbas391  toSci 7E-3  -> 0.007
dsbas392  toEng 7E-3  -> 0.007
dsbas393  toSci 7E-4  -> 0.0007
dsbas394  toEng 7E-4  -> 0.0007
dsbas395  toSci 7E-5  -> 0.00007
dsbas396  toEng 7E-5  -> 0.00007
dsbas397  toSci 7E-6  -> 0.000007
dsbas398  toEng 7E-6  -> 0.000007
dsbas399  toSci 7E-7  -> 7E-7
dsbas400  toEng 7E-7  -> 700E-9
dsbas401  toSci 7E-8  -> 7E-8
dsbas402  toEng 7E-8  -> 70E-9
dsbas403  toSci 7E-9  -> 7E-9
dsbas404  toEng 7E-9  -> 7E-9
dsbas405  toSci 7E-10 -> 7E-10
dsbas406  toEng 7E-10 -> 700E-12
dsbas407  toSci 7E-11 -> 7E-11
dsbas408  toEng 7E-11 -> 70E-12
dsbas409  toSci 7E-12 -> 7E-12
dsbas410  toEng 7E-12 -> 7E-12
dsbas411  toSci 7E-13 -> 7E-13
dsbas412  toEng 7E-13 -> 700E-15

-- Exacts remain exact up to precision ..
dsbas420  toSci    100 -> 100
dsbas422  toSci   1000 -> 1000
dsbas424  toSci  999.9 ->  999.9
dsbas426  toSci 1000.0 -> 1000.0
dsbas428  toSci 1000.1 -> 1000.1
dsbas430  toSci 10000 -> 10000
dsbas432  toSci 1000        -> 1000
dsbas434  toSci 10000       -> 10000
dsbas436  toSci 100000      -> 100000
dsbas438  toSci 1000000     -> 1000000
dsbas440  toSci 10000000    -> 1.000000E+7   Rounded
dsbas442  toSci 10000000    -> 1.000000E+7   Rounded
dsbas444  toSci 10000003    -> 1.000000E+7   Rounded Inexact
dsbas446  toSci 10000005    -> 1.000000E+7   Rounded Inexact
dsbas448  toSci 100000050   -> 1.000000E+8   Rounded Inexact
dsbas450  toSci 10000009    -> 1.000001E+7   Rounded Inexact
dsbas452  toSci 100000000   -> 1.000000E+8   Rounded
dsbas454  toSci 100000003   -> 1.000000E+8   Rounded Inexact
dsbas456  toSci 100000005   -> 1.000000E+8   Rounded Inexact
dsbas458  toSci 100000009   -> 1.000000E+8   Rounded Inexact
dsbas460  toSci 1000000000  -> 1.000000E+9   Rounded
dsbas462  toSci 1000000300  -> 1.000000E+9   Rounded Inexact
dsbas464  toSci 1000000500  -> 1.000000E+9   Rounded Inexact
dsbas466  toSci 1000000900  -> 1.000001E+9   Rounded Inexact
dsbas468  toSci 10000000000 -> 1.000000E+10  Rounded
dsbas470  toSci 10000003000 -> 1.000000E+10  Rounded Inexact
dsbas472  toSci 10000005000 -> 1.000000E+10  Rounded Inexact
dsbas474  toSci 10000009000 -> 1.000001E+10  Rounded Inexact

-- check rounding modes heeded
rounding:  ceiling
dsbsr401  toSci  1.1123450    ->  1.112345  Rounded
dsbsr402  toSci  1.11234549   ->  1.112346  Rounded Inexact
dsbsr403  toSci  1.11234550   ->  1.112346  Rounded Inexact
dsbsr404  toSci  1.11234551   ->  1.112346  Rounded Inexact
rounding:  up
dsbsr405  toSci  1.1123450    ->  1.112345  Rounded
dsbsr406  toSci  1.11234549   ->  1.112346  Rounded Inexact
dsbsr407  toSci  1.11234550   ->  1.112346  Rounded Inexact
dsbsr408  toSci  1.11234551   ->  1.112346  Rounded Inexact
rounding:  floor
dsbsr410  toSci  1.1123450    ->  1.112345  Rounded
dsbsr411  toSci  1.11234549   ->  1.112345  Rounded Inexact
dsbsr412  toSci  1.11234550   ->  1.112345  Rounded Inexact
dsbsr413  toSci  1.11234551   ->  1.112345  Rounded Inexact
rounding:  half_down
dsbsr415  toSci  1.1123450    ->  1.112345  Rounded
dsbsr416  toSci  1.11234549   ->  1.112345  Rounded Inexact
dsbsr417  toSci  1.11234550   ->  1.112345  Rounded Inexact
dsbsr418  toSci  1.11234650   ->  1.112346  Rounded Inexact
dsbsr419  toSci  1.11234551   ->  1.112346  Rounded Inexact
rounding:  half_even
dsbsr421  toSci  1.1123450    ->  1.112345  Rounded
dsbsr422  toSci  1.11234549   ->  1.112345  Rounded Inexact
dsbsr423  toSci  1.11234550   ->  1.112346  Rounded Inexact
dsbsr424  toSci  1.11234650   ->  1.112346  Rounded Inexact
dsbsr425  toSci  1.11234551   ->  1.112346  Rounded Inexact
rounding:  down
dsbsr426  toSci  1.1123450    ->  1.112345  Rounded
dsbsr427  toSci  1.11234549   ->  1.112345  Rounded Inexact
dsbsr428  toSci  1.11234550   ->  1.112345  Rounded Inexact
dsbsr429  toSci  1.11234551   ->  1.112345  Rounded Inexact
rounding:  half_up
dsbsr431  toSci  1.1123450    ->  1.112345  Rounded
dsbsr432  toSci  1.11234549   ->  1.112345  Rounded Inexact
dsbsr433  toSci  1.11234550   ->  1.112346  Rounded Inexact
dsbsr434  toSci  1.11234650   ->  1.112347  Rounded Inexact
dsbsr435  toSci  1.11234551   ->  1.112346  Rounded Inexact
-- negatives
rounding:  ceiling
dsbsr501  toSci -1.1123450    -> -1.112345  Rounded
dsbsr502  toSci -1.11234549   -> -1.112345  Rounded Inexact
dsbsr503  toSci -1.11234550   -> -1.112345  Rounded Inexact
dsbsr504  toSci -1.11234551   -> -1.112345  Rounded Inexact
rounding:  up
dsbsr505  toSci -1.1123450    -> -1.112345  Rounded
dsbsr506  toSci -1.11234549   -> -1.112346  Rounded Inexact
dsbsr507  toSci -1.11234550   -> -1.112346  Rounded Inexact
dsbsr508  toSci -1.11234551   -> -1.112346  Rounded Inexact
rounding:  floor
dsbsr510  toSci -1.1123450    -> -1.112345  Rounded
dsbsr511  toSci -1.11234549   -> -1.112346  Rounded Inexact
dsbsr512  toSci -1.11234550   -> -1.112346  Rounded Inexact
dsbsr513  toSci -1.11234551   -> -1.112346  Rounded Inexact
rounding:  half_down
dsbsr515  toSci -1.1123450    -> -1.112345  Rounded
dsbsr516  toSci -1.11234549   -> -1.112345  Rounded Inexact
dsbsr517  toSci -1.11234550   -> -1.112345  Rounded Inexact
dsbsr518  toSci -1.11234650   -> -1.112346  Rounded Inexact
dsbsr519  toSci -1.11234551   -> -1.112346  Rounded Inexact
rounding:  half_even
dsbsr521  toSci -1.1123450    -> -1.112345  Rounded
dsbsr522  toSci -1.11234549   -> -1.112345  Rounded Inexact
dsbsr523  toSci -1.11234550   -> -1.112346  Rounded Inexact
dsbsr524  toSci -1.11234650   -> -1.112346  Rounded Inexact
dsbsr525  toSci -1.11234551   -> -1.112346  Rounded Inexact
rounding:  down
dsbsr526  toSci -1.1123450    -> -1.112345  Rounded
dsbsr527  toSci -1.11234549   -> -1.112345  Rounded Inexact
dsbsr528  toSci -1.11234550   -> -1.112345  Rounded Inexact
dsbsr529  toSci -1.11234551   -> -1.112345  Rounded Inexact
rounding:  half_up
dsbsr531  toSci -1.1123450    -> -1.112345  Rounded
dsbsr532  toSci -1.11234549   -> -1.112345  Rounded Inexact
dsbsr533  toSci -1.11234550   -> -1.112346  Rounded Inexact
dsbsr534  toSci -1.11234650   -> -1.112347  Rounded Inexact
dsbsr535  toSci -1.11234551   -> -1.112346  Rounded Inexact

rounding:    half_even

-- The 'baddies' tests from DiagBigDecimal, plus some new ones
dsbas500 toSci '1..2'            -> NaN Conversion_syntax
dsbas501 toSci '.'               -> NaN Conversion_syntax
dsbas502 toSci '..'              -> NaN Conversion_syntax
dsbas503 toSci '++1'             -> NaN Conversion_syntax
dsbas504 toSci '--1'             -> NaN Conversion_syntax
dsbas505 toSci '-+1'             -> NaN Conversion_syntax
dsbas506 toSci '+-1'             -> NaN Conversion_syntax
dsbas507 toSci '12e'             -> NaN Conversion_syntax
dsbas508 toSci '12e++'           -> NaN Conversion_syntax
dsbas509 toSci '12f4'            -> NaN Conversion_syntax
dsbas510 toSci ' +1'             -> NaN Conversion_syntax
dsbas511 toSci '+ 1'             -> NaN Conversion_syntax
dsbas512 toSci '12 '             -> NaN Conversion_syntax
dsbas513 toSci ' + 1'            -> NaN Conversion_syntax
dsbas514 toSci ' - 1 '           -> NaN Conversion_syntax
dsbas515 toSci 'x'               -> NaN Conversion_syntax
dsbas516 toSci '-1-'             -> NaN Conversion_syntax
dsbas517 toSci '12-'             -> NaN Conversion_syntax
dsbas518 toSci '3+'              -> NaN Conversion_syntax
dsbas519 toSci ''                -> NaN Conversion_syntax
dsbas520 toSci '1e-'             -> NaN Conversion_syntax
dsbas521 toSci '7e99999a'        -> NaN Conversion_syntax
dsbas522 toSci '7e123567890x'    -> NaN Conversion_syntax
dsbas523 toSci '7e12356789012x'  -> NaN Conversion_syntax
dsbas524 toSci ''                -> NaN Conversion_syntax
dsbas525 toSci 'e100'            -> NaN Conversion_syntax
dsbas526 toSci '\u0e5a'          -> NaN Conversion_syntax
dsbas527 toSci '\u0b65'          -> NaN Conversion_syntax
dsbas528 toSci '123,65'          -> NaN Conversion_syntax
dsbas529 toSci '1.34.5'          -> NaN Conversion_syntax
dsbas530 toSci '.123.5'          -> NaN Conversion_syntax
dsbas531 toSci '01.35.'          -> NaN Conversion_syntax
dsbas532 toSci '01.35-'          -> NaN Conversion_syntax
dsbas533 toSci '0000..'          -> NaN Conversion_syntax
dsbas534 toSci '.0000.'          -> NaN Conversion_syntax
dsbas535 toSci '00..00'          -> NaN Conversion_syntax
dsbas536 toSci '111e*123'        -> NaN Conversion_syntax
dsbas537 toSci '111e123-'        -> NaN Conversion_syntax
dsbas538 toSci '111e+12+'        -> NaN Conversion_syntax
dsbas539 toSci '111e1-3-'        -> NaN Conversion_syntax
dsbas540 toSci '111e1*23'        -> NaN Conversion_syntax
dsbas541 toSci '111e1e+3'        -> NaN Conversion_syntax
dsbas542 toSci '1e1.0'           -> NaN Conversion_syntax
dsbas543 toSci '1e123e'          -> NaN Conversion_syntax
dsbas544 toSci 'ten'             -> NaN Conversion_syntax
dsbas545 toSci 'ONE'             -> NaN Conversion_syntax
dsbas546 toSci '1e.1'            -> NaN Conversion_syntax
dsbas547 toSci '1e1.'            -> NaN Conversion_syntax
dsbas548 toSci '1ee'             -> NaN Conversion_syntax
dsbas549 toSci 'e+1'             -> NaN Conversion_syntax
dsbas550 toSci '1.23.4'          -> NaN Conversion_syntax
dsbas551 toSci '1.2.1'           -> NaN Conversion_syntax
dsbas552 toSci '1E+1.2'          -> NaN Conversion_syntax
dsbas553 toSci '1E+1.2.3'        -> NaN Conversion_syntax
dsbas554 toSci '1E++1'           -> NaN Conversion_syntax
dsbas555 toSci '1E--1'           -> NaN Conversion_syntax
dsbas556 toSci '1E+-1'           -> NaN Conversion_syntax
dsbas557 toSci '1E-+1'           -> NaN Conversion_syntax
dsbas558 toSci '1E''1'           -> NaN Conversion_syntax
dsbas559 toSci "1E""1"           -> NaN Conversion_syntax
dsbas560 toSci "1E"""""          -> NaN Conversion_syntax
-- Near-specials
dsbas561 toSci "qNaN"            -> NaN Conversion_syntax
dsbas562 toSci "NaNq"            -> NaN Conversion_syntax
dsbas563 toSci "NaNs"            -> NaN Conversion_syntax
dsbas564 toSci "Infi"            -> NaN Conversion_syntax
dsbas565 toSci "Infin"           -> NaN Conversion_syntax
dsbas566 toSci "Infini"          -> NaN Conversion_syntax
dsbas567 toSci "Infinit"         -> NaN Conversion_syntax
dsbas568 toSci "-Infinit"        -> NaN Conversion_syntax
dsbas569 toSci "0Inf"            -> NaN Conversion_syntax
dsbas570 toSci "9Inf"            -> NaN Conversion_syntax
dsbas571 toSci "-0Inf"           -> NaN Conversion_syntax
dsbas572 toSci "-9Inf"           -> NaN Conversion_syntax
dsbas573 toSci "-sNa"            -> NaN Conversion_syntax
dsbas574 toSci "xNaN"            -> NaN Conversion_syntax
dsbas575 toSci "0sNaN"           -> NaN Conversion_syntax

-- some baddies with dots and Es and dots and specials
dsbas576 toSci  'e+1'            ->  NaN Conversion_syntax
dsbas577 toSci  '.e+1'           ->  NaN Conversion_syntax
dsbas578 toSci  '+.e+1'          ->  NaN Conversion_syntax
dsbas579 toSci  '-.e+'           ->  NaN Conversion_syntax
dsbas580 toSci  '-.e'            ->  NaN Conversion_syntax
dsbas581 toSci  'E+1'            ->  NaN Conversion_syntax
dsbas582 toSci  '.E+1'           ->  NaN Conversion_syntax
dsbas583 toSci  '+.E+1'          ->  NaN Conversion_syntax
dsbas584 toSci  '-.E+'           ->  NaN Conversion_syntax
dsbas585 toSci  '-.E'            ->  NaN Conversion_syntax

dsbas586 toSci  '.NaN'           ->  NaN Conversion_syntax
dsbas587 toSci  '-.NaN'          ->  NaN Conversion_syntax
dsbas588 toSci  '+.sNaN'         ->  NaN Conversion_syntax
dsbas589 toSci  '+.Inf'          ->  NaN Conversion_syntax
dsbas590 toSci  '.Infinity'      ->  NaN Conversion_syntax

-- Zeros
dsbas601 toSci 0.000000000       -> 0E-9
dsbas602 toSci 0.00000000        -> 0E-8
dsbas603 toSci 0.0000000         -> 0E-7
dsbas604 toSci 0.000000          -> 0.000000
dsbas605 toSci 0.00000           -> 0.00000
dsbas606 toSci 0.0000            -> 0.0000
dsbas607 toSci 0.000             -> 0.000
dsbas608 toSci 0.00              -> 0.00
dsbas609 toSci 0.0               -> 0.0
dsbas610 toSci  .0               -> 0.0
dsbas611 toSci 0.                -> 0
dsbas612 toSci -.0               -> -0.0
dsbas613 toSci -0.               -> -0
dsbas614 toSci -0.0              -> -0.0
dsbas615 toSci -0.00             -> -0.00
dsbas616 toSci -0.000            -> -0.000
dsbas617 toSci -0.0000           -> -0.0000
dsbas618 toSci -0.00000          -> -0.00000
dsbas619 toSci -0.000000         -> -0.000000
dsbas620 toSci -0.0000000        -> -0E-7
dsbas621 toSci -0.00000000       -> -0E-8
dsbas622 toSci -0.000000000      -> -0E-9

dsbas630 toSci  0.00E+0          -> 0.00
dsbas631 toSci  0.00E+1          -> 0.0
dsbas632 toSci  0.00E+2          -> 0
dsbas633 toSci  0.00E+3          -> 0E+1
dsbas634 toSci  0.00E+4          -> 0E+2
dsbas635 toSci  0.00E+5          -> 0E+3
dsbas636 toSci  0.00E+6          -> 0E+4
dsbas637 toSci  0.00E+7          -> 0E+5
dsbas638 toSci  0.00E+8          -> 0E+6
dsbas639 toSci  0.00E+9          -> 0E+7

dsbas640 toSci  0.0E+0           -> 0.0
dsbas641 toSci  0.0E+1           -> 0
dsbas642 toSci  0.0E+2           -> 0E+1
dsbas643 toSci  0.0E+3           -> 0E+2
dsbas644 toSci  0.0E+4           -> 0E+3
dsbas645 toSci  0.0E+5           -> 0E+4
dsbas646 toSci  0.0E+6           -> 0E+5
dsbas647 toSci  0.0E+7           -> 0E+6
dsbas648 toSci  0.0E+8           -> 0E+7
dsbas649 toSci  0.0E+9           -> 0E+8

dsbas650 toSci  0E+0             -> 0
dsbas651 toSci  0E+1             -> 0E+1
dsbas652 toSci  0E+2             -> 0E+2
dsbas653 toSci  0E+3             -> 0E+3
dsbas654 toSci  0E+4             -> 0E+4
dsbas655 toSci  0E+5             -> 0E+5
dsbas656 toSci  0E+6             -> 0E+6
dsbas657 toSci  0E+7             -> 0E+7
dsbas658 toSci  0E+8             -> 0E+8
dsbas659 toSci  0E+9             -> 0E+9

dsbas660 toSci  0.0E-0           -> 0.0
dsbas661 toSci  0.0E-1           -> 0.00
dsbas662 toSci  0.0E-2           -> 0.000
dsbas663 toSci  0.0E-3           -> 0.0000
dsbas664 toSci  0.0E-4           -> 0.00000
dsbas665 toSci  0.0E-5           -> 0.000000
dsbas666 toSci  0.0E-6           -> 0E-7
dsbas667 toSci  0.0E-7           -> 0E-8
dsbas668 toSci  0.0E-8           -> 0E-9
dsbas669 toSci  0.0E-9           -> 0E-10

dsbas670 toSci  0.00E-0          -> 0.00
dsbas671 toSci  0.00E-1          -> 0.000
dsbas672 toSci  0.00E-2          -> 0.0000
dsbas673 toSci  0.00E-3          -> 0.00000
dsbas674 toSci  0.00E-4          -> 0.000000
dsbas675 toSci  0.00E-5          -> 0E-7
dsbas676 toSci  0.00E-6          -> 0E-8
dsbas677 toSci  0.00E-7          -> 0E-9
dsbas678 toSci  0.00E-8          -> 0E-10
dsbas679 toSci  0.00E-9          -> 0E-11

dsbas680 toSci  000000.          ->  0
dsbas681 toSci   00000.          ->  0
dsbas682 toSci    0000.          ->  0
dsbas683 toSci     000.          ->  0
dsbas684 toSci      00.          ->  0
dsbas685 toSci       0.          ->  0
dsbas686 toSci  +00000.          ->  0
dsbas687 toSci  -00000.          -> -0
dsbas688 toSci  +0.              ->  0
dsbas689 toSci  -0.              -> -0

-- Specials
dsbas700 toSci "NaN"             -> NaN
dsbas701 toSci "nan"             -> NaN
dsbas702 toSci "nAn"             -> NaN
dsbas703 toSci "NAN"             -> NaN
dsbas704 toSci "+NaN"            -> NaN
dsbas705 toSci "+nan"            -> NaN
dsbas706 toSci "+nAn"            -> NaN
dsbas707 toSci "+NAN"            -> NaN
dsbas708 toSci "-NaN"            -> -NaN
dsbas709 toSci "-nan"            -> -NaN
dsbas710 toSci "-nAn"            -> -NaN
dsbas711 toSci "-NAN"            -> -NaN
dsbas712 toSci 'NaN0'            -> NaN
dsbas713 toSci 'NaN1'            -> NaN1
dsbas714 toSci 'NaN12'           -> NaN12
dsbas715 toSci 'NaN123'          -> NaN123
dsbas716 toSci 'NaN1234'         -> NaN1234
dsbas717 toSci 'NaN01'           -> NaN1
dsbas718 toSci 'NaN012'          -> NaN12
dsbas719 toSci 'NaN0123'         -> NaN123
dsbas720 toSci 'NaN01234'        -> NaN1234
dsbas721 toSci 'NaN001'          -> NaN1
dsbas722 toSci 'NaN0012'         -> NaN12
dsbas723 toSci 'NaN00123'        -> NaN123
dsbas724 toSci 'NaN001234'       -> NaN1234
dsbas725 toSci 'NaN1234567890123456' -> NaN Conversion_syntax
dsbas726 toSci 'NaN123e+1'       -> NaN Conversion_syntax
dsbas727 toSci 'NaN12.45'        -> NaN Conversion_syntax
dsbas728 toSci 'NaN-12'          -> NaN Conversion_syntax
dsbas729 toSci 'NaN+12'          -> NaN Conversion_syntax

dsbas730 toSci "sNaN"            -> sNaN
dsbas731 toSci "snan"            -> sNaN
dsbas732 toSci "SnAn"            -> sNaN
dsbas733 toSci "SNAN"            -> sNaN
dsbas734 toSci "+sNaN"           -> sNaN
dsbas735 toSci "+snan"           -> sNaN
dsbas736 toSci "+SnAn"           -> sNaN
dsbas737 toSci "+SNAN"           -> sNaN
dsbas738 toSci "-sNaN"           -> -sNaN
dsbas739 toSci "-snan"           -> -sNaN
dsbas740 toSci "-SnAn"           -> -sNaN
dsbas741 toSci "-SNAN"           -> -sNaN
dsbas742 toSci 'sNaN0000'        -> sNaN
dsbas743 toSci 'sNaN7'           -> sNaN7
dsbas744 toSci 'sNaN007234'      -> sNaN7234
dsbas745 toSci 'sNaN7234561234567890' -> NaN Conversion_syntax
dsbas746 toSci 'sNaN72.45'       -> NaN Conversion_syntax
dsbas747 toSci 'sNaN-72'         -> NaN Conversion_syntax

dsbas748 toSci "Inf"             -> Infinity
dsbas749 toSci "inf"             -> Infinity
dsbas750 toSci "iNf"             -> Infinity
dsbas751 toSci "INF"             -> Infinity
dsbas752 toSci "+Inf"            -> Infinity
dsbas753 toSci "+inf"            -> Infinity
dsbas754 toSci "+iNf"            -> Infinity
dsbas755 toSci "+INF"            -> Infinity
dsbas756 toSci "-Inf"            -> -Infinity
dsbas757 toSci "-inf"            -> -Infinity
dsbas758 toSci "-iNf"            -> -Infinity
dsbas759 toSci "-INF"            -> -Infinity

dsbas760 toSci "Infinity"        -> Infinity
dsbas761 toSci "infinity"        -> Infinity
dsbas762 toSci "iNfInItY"        -> Infinity
dsbas763 toSci "INFINITY"        -> Infinity
dsbas764 toSci "+Infinity"       -> Infinity
dsbas765 toSci "+infinity"       -> Infinity
dsbas766 toSci "+iNfInItY"       -> Infinity
dsbas767 toSci "+INFINITY"       -> Infinity
dsbas768 toSci "-Infinity"       -> -Infinity
dsbas769 toSci "-infinity"       -> -Infinity
dsbas770 toSci "-iNfInItY"       -> -Infinity
dsbas771 toSci "-INFINITY"       -> -Infinity

-- Specials and zeros for toEng
dsbast772 toEng "NaN"              -> NaN
dsbast773 toEng "-Infinity"        -> -Infinity
dsbast774 toEng "-sNaN"            -> -sNaN
dsbast775 toEng "-NaN"             -> -NaN
dsbast776 toEng "+Infinity"        -> Infinity
dsbast778 toEng "+sNaN"            -> sNaN
dsbast779 toEng "+NaN"             -> NaN
dsbast780 toEng "INFINITY"         -> Infinity
dsbast781 toEng "SNAN"             -> sNaN
dsbast782 toEng "NAN"              -> NaN
dsbast783 toEng "infinity"         -> Infinity
dsbast784 toEng "snan"             -> sNaN
dsbast785 toEng "nan"              -> NaN
dsbast786 toEng "InFINITY"         -> Infinity
dsbast787 toEng "SnAN"             -> sNaN
dsbast788 toEng "nAN"              -> NaN
dsbast789 toEng "iNfinity"         -> Infinity
dsbast790 toEng "sNan"             -> sNaN
dsbast791 toEng "Nan"              -> NaN
dsbast792 toEng "Infinity"         -> Infinity
dsbast793 toEng "sNaN"             -> sNaN

-- Zero toEng, etc.
dsbast800 toEng 0e+1              -> "0.00E+3"  -- doc example

dsbast801 toEng 0.000000000       -> 0E-9
dsbast802 toEng 0.00000000        -> 0.00E-6
dsbast803 toEng 0.0000000         -> 0.0E-6
dsbast804 toEng 0.000000          -> 0.000000
dsbast805 toEng 0.00000           -> 0.00000
dsbast806 toEng 0.0000            -> 0.0000
dsbast807 toEng 0.000             -> 0.000
dsbast808 toEng 0.00              -> 0.00
dsbast809 toEng 0.0               -> 0.0
dsbast810 toEng  .0               -> 0.0
dsbast811 toEng 0.                -> 0
dsbast812 toEng -.0               -> -0.0
dsbast813 toEng -0.               -> -0
dsbast814 toEng -0.0              -> -0.0
dsbast815 toEng -0.00             -> -0.00
dsbast816 toEng -0.000            -> -0.000
dsbast817 toEng -0.0000           -> -0.0000
dsbast818 toEng -0.00000          -> -0.00000
dsbast819 toEng -0.000000         -> -0.000000
dsbast820 toEng -0.0000000        -> -0.0E-6
dsbast821 toEng -0.00000000       -> -0.00E-6
dsbast822 toEng -0.000000000      -> -0E-9

dsbast830 toEng  0.00E+0          -> 0.00
dsbast831 toEng  0.00E+1          -> 0.0
dsbast832 toEng  0.00E+2          -> 0
dsbast833 toEng  0.00E+3          -> 0.00E+3
dsbast834 toEng  0.00E+4          -> 0.0E+3
dsbast835 toEng  0.00E+5          -> 0E+3
dsbast836 toEng  0.00E+6          -> 0.00E+6
dsbast837 toEng  0.00E+7          -> 0.0E+6
dsbast838 toEng  0.00E+8          -> 0E+6
dsbast839 toEng  0.00E+9          -> 0.00E+9

dsbast840 toEng  0.0E+0           -> 0.0
dsbast841 toEng  0.0E+1           -> 0
dsbast842 toEng  0.0E+2           -> 0.00E+3
dsbast843 toEng  0.0E+3           -> 0.0E+3
dsbast844 toEng  0.0E+4           -> 0E+3
dsbast845 toEng  0.0E+5           -> 0.00E+6
dsbast846 toEng  0.0E+6           -> 0.0E+6
dsbast847 toEng  0.0E+7           -> 0E+6
dsbast848 toEng  0.0E+8           -> 0.00E+9
dsbast849 toEng  0.0E+9           -> 0.0E+9

dsbast850 toEng  0E+0             -> 0
dsbast851 toEng  0E+1             -> 0.00E+3
dsbast852 toEng  0E+2             -> 0.0E+3
dsbast853 toEng  0E+3             -> 0E+3
dsbast854 toEng  0E+4             -> 0.00E+6
dsbast855 toEng  0E+5             -> 0.0E+6
dsbast856 toEng  0E+6             -> 0E+6
dsbast857 toEng  0E+7             -> 0.00E+9
dsbast858 toEng  0E+8             -> 0.0E+9
dsbast859 toEng  0E+9             -> 0E+9

dsbast860 toEng  0.0E-0           -> 0.0
dsbast861 toEng  0.0E-1           -> 0.00
dsbast862 toEng  0.0E-2           -> 0.000
dsbast863 toEng  0.0E-3           -> 0.0000
dsbast864 toEng  0.0E-4           -> 0.00000
dsbast865 toEng  0.0E-5           -> 0.000000
dsbast866 toEng  0.0E-6           -> 0.0E-6
dsbast867 toEng  0.0E-7           -> 0.00E-6
dsbast868 toEng  0.0E-8           -> 0E-9
dsbast869 toEng  0.0E-9           -> 0.0E-9

dsbast870 toEng  0.00E-0          -> 0.00
dsbast871 toEng  0.00E-1          -> 0.000
dsbast872 toEng  0.00E-2          -> 0.0000
dsbast873 toEng  0.00E-3          -> 0.00000
dsbast874 toEng  0.00E-4          -> 0.000000
dsbast875 toEng  0.00E-5          -> 0.0E-6
dsbast876 toEng  0.00E-6          -> 0.00E-6
dsbast877 toEng  0.00E-7          -> 0E-9
dsbast878 toEng  0.00E-8          -> 0.0E-9
dsbast879 toEng  0.00E-9          -> 0.00E-9

-- long input strings
dsbas801 tosci          '01234567' -> 1234567
dsbas802 tosci         '001234567' -> 1234567
dsbas803 tosci        '0001234567' -> 1234567
dsbas804 tosci       '00001234567' -> 1234567
dsbas805 tosci      '000001234567' -> 1234567
dsbas806 tosci     '0000001234567' -> 1234567
dsbas807 tosci    '00000001234567' -> 1234567
dsbas808 tosci   '000000001234567' -> 1234567
dsbas809 tosci  '0000000001234567' -> 1234567
dsbas810 tosci '00000000001234567' -> 1234567

dsbas811 tosci          '0.1234567' ->      0.1234567
dsbas812 tosci         '0.01234567' ->     0.01234567
dsbas813 tosci        '0.001234567' ->    0.001234567
dsbas814 tosci       '0.0001234567' ->   0.0001234567
dsbas815 tosci      '0.00001234567' ->  0.00001234567
dsbas816 tosci     '0.000001234567' -> 0.000001234567
dsbas817 tosci    '0.0000001234567' ->       1.234567E-7
dsbas818 tosci   '0.00000001234567' ->       1.234567E-8
dsbas819 tosci  '0.000000001234567' ->       1.234567E-9
dsbas820 tosci '0.0000000001234567' ->       1.234567E-10

dsbas821 tosci '123456790'         -> 1.234568E+8 Inexact Rounded
dsbas822 tosci '1234567901'        -> 1.234568E+9  Inexact Rounded
dsbas823 tosci '12345679012'       -> 1.234568E+10 Inexact Rounded
dsbas824 tosci '123456790123'      -> 1.234568E+11 Inexact Rounded
dsbas825 tosci '1234567901234'     -> 1.234568E+12 Inexact Rounded
dsbas826 tosci '12345679012345'    -> 1.234568E+13 Inexact Rounded
dsbas827 tosci '123456790123456'   -> 1.234568E+14 Inexact Rounded
dsbas828 tosci '1234567901234567'  -> 1.234568E+15 Inexact Rounded
dsbas829 tosci '1234567890123456'  -> 1.234568E+15 Inexact Rounded

-- subnormals and overflows
dsbas906 toSci '99e999999999'       -> Infinity Overflow  Inexact Rounded
dsbas907 toSci '999e999999999'      -> Infinity Overflow  Inexact Rounded
dsbas908 toSci '0.9e-999999999'     -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas909 toSci '0.09e-999999999'    -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas910 toSci '0.1e1000000000'     -> Infinity Overflow  Inexact Rounded
dsbas911 toSci '10e-1000000000'     -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas912 toSci '0.9e9999999999'     -> Infinity Overflow  Inexact Rounded
dsbas913 toSci '99e-9999999999'     -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas914 toSci '111e9999999999'     -> Infinity Overflow  Inexact Rounded
dsbas915 toSci '1111e-9999999999'   -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas916 toSci '1111e-99999999999'  -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas917 toSci '7e1000000000'       -> Infinity Overflow  Inexact Rounded
-- negatives the same
dsbas918 toSci '-99e999999999'      -> -Infinity Overflow  Inexact Rounded
dsbas919 toSci '-999e999999999'     -> -Infinity Overflow  Inexact Rounded
dsbas920 toSci '-0.9e-999999999'    -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas921 toSci '-0.09e-999999999'   -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas922 toSci '-0.1e1000000000'    -> -Infinity Overflow  Inexact Rounded
dsbas923 toSci '-10e-1000000000'    -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas924 toSci '-0.9e9999999999'    -> -Infinity Overflow  Inexact Rounded
dsbas925 toSci '-99e-9999999999'    -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas926 toSci '-111e9999999999'    -> -Infinity Overflow  Inexact Rounded
dsbas927 toSci '-1111e-9999999999'  -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas928 toSci '-1111e-99999999999' -> -0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas929 toSci '-7e1000000000'      -> -Infinity Overflow  Inexact Rounded

-- overflow results at different rounding modes
rounding:  ceiling
dsbas930 toSci  '7e10000'  ->  Infinity Overflow  Inexact Rounded
dsbas931 toSci '-7e10000'  -> -9.999999E+96 Overflow  Inexact Rounded
rounding:  up
dsbas932 toSci  '7e10000'  ->  Infinity Overflow  Inexact Rounded
dsbas933 toSci '-7e10000'  -> -Infinity Overflow  Inexact Rounded
rounding:  down
dsbas934 toSci  '7e10000'  ->  9.999999E+96 Overflow  Inexact Rounded
dsbas935 toSci '-7e10000'  -> -9.999999E+96 Overflow  Inexact Rounded
rounding:  floor
dsbas936 toSci  '7e10000'  ->  9.999999E+96 Overflow  Inexact Rounded
dsbas937 toSci '-7e10000'  -> -Infinity Overflow  Inexact Rounded

rounding:  half_up
dsbas938 toSci  '7e10000'  ->  Infinity Overflow  Inexact Rounded
dsbas939 toSci '-7e10000'  -> -Infinity Overflow  Inexact Rounded
rounding:  half_even
dsbas940 toSci  '7e10000'  ->  Infinity Overflow  Inexact Rounded
dsbas941 toSci '-7e10000'  -> -Infinity Overflow  Inexact Rounded
rounding:  half_down
dsbas942 toSci  '7e10000'  ->  Infinity Overflow  Inexact Rounded
dsbas943 toSci '-7e10000'  -> -Infinity Overflow  Inexact Rounded

rounding:  half_even

-- Now check 854/754r some subnormals and underflow to 0
dsbem400 toSci  1.0000E-86     -> 1.0000E-86
dsbem401 toSci  0.1E-97        -> 1E-98       Subnormal
dsbem402 toSci  0.1000E-97     -> 1.000E-98   Subnormal
dsbem403 toSci  0.0100E-97     -> 1.00E-99    Subnormal
dsbem404 toSci  0.0010E-97     -> 1.0E-100     Subnormal
dsbem405 toSci  0.0001E-97     -> 1E-101       Subnormal
dsbem406 toSci  0.00010E-97    -> 1E-101     Subnormal Rounded
dsbem407 toSci  0.00013E-97    -> 1E-101     Underflow Subnormal Inexact Rounded
dsbem408 toSci  0.00015E-97    -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem409 toSci  0.00017E-97    -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem410 toSci  0.00023E-97    -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem411 toSci  0.00025E-97    -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem412 toSci  0.00027E-97    -> 3E-101     Underflow Subnormal Inexact Rounded
dsbem413 toSci  0.000149E-97   -> 1E-101     Underflow Subnormal Inexact Rounded
dsbem414 toSci  0.000150E-97   -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem415 toSci  0.000151E-97   -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem416 toSci  0.000249E-97   -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem417 toSci  0.000250E-97   -> 2E-101     Underflow Subnormal Inexact Rounded
dsbem418 toSci  0.000251E-97   -> 3E-101     Underflow Subnormal Inexact Rounded
dsbem419 toSci  0.00009E-97    -> 1E-101     Underflow Subnormal Inexact Rounded
dsbem420 toSci  0.00005E-97    -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem421 toSci  0.00003E-97    -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem422 toSci  0.000009E-97   -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem423 toSci  0.000005E-97   -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem424 toSci  0.000003E-97   -> 0E-101     Underflow Subnormal Inexact Rounded Clamped

dsbem425 toSci  0.001049E-97   -> 1.0E-100   Underflow Subnormal Inexact Rounded
dsbem426 toSci  0.001050E-97   -> 1.0E-100   Underflow Subnormal Inexact Rounded
dsbem427 toSci  0.001051E-97   -> 1.1E-100   Underflow Subnormal Inexact Rounded
dsbem428 toSci  0.001149E-97   -> 1.1E-100   Underflow Subnormal Inexact Rounded
dsbem429 toSci  0.001150E-97   -> 1.2E-100   Underflow Subnormal Inexact Rounded
dsbem430 toSci  0.001151E-97   -> 1.2E-100   Underflow Subnormal Inexact Rounded

dsbem432 toSci  0.010049E-97   -> 1.00E-99  Underflow Subnormal Inexact Rounded
dsbem433 toSci  0.010050E-97   -> 1.00E-99  Underflow Subnormal Inexact Rounded
dsbem434 toSci  0.010051E-97   -> 1.01E-99  Underflow Subnormal Inexact Rounded
dsbem435 toSci  0.010149E-97   -> 1.01E-99  Underflow Subnormal Inexact Rounded
dsbem436 toSci  0.010150E-97   -> 1.02E-99  Underflow Subnormal Inexact Rounded
dsbem437 toSci  0.010151E-97   -> 1.02E-99  Underflow Subnormal Inexact Rounded

dsbem440 toSci  0.10103E-97    -> 1.010E-98 Underflow Subnormal Inexact Rounded
dsbem441 toSci  0.10105E-97    -> 1.010E-98 Underflow Subnormal Inexact Rounded
dsbem442 toSci  0.10107E-97    -> 1.011E-98 Underflow Subnormal Inexact Rounded
dsbem443 toSci  0.10113E-97    -> 1.011E-98 Underflow Subnormal Inexact Rounded
dsbem444 toSci  0.10115E-97    -> 1.012E-98 Underflow Subnormal Inexact Rounded
dsbem445 toSci  0.10117E-97    -> 1.012E-98 Underflow Subnormal Inexact Rounded

dsbem450 toSci  1.10730E-98    -> 1.107E-98 Underflow Subnormal Inexact Rounded
dsbem451 toSci  1.10750E-98    -> 1.108E-98 Underflow Subnormal Inexact Rounded
dsbem452 toSci  1.10770E-98    -> 1.108E-98 Underflow Subnormal Inexact Rounded
dsbem453 toSci  1.10830E-98    -> 1.108E-98 Underflow Subnormal Inexact Rounded
dsbem454 toSci  1.10850E-98    -> 1.108E-98 Underflow Subnormal Inexact Rounded
dsbem455 toSci  1.10870E-98    -> 1.109E-98 Underflow Subnormal Inexact Rounded

-- make sure sign OK
dsbem456 toSci  -0.10103E-97   -> -1.010E-98 Underflow Subnormal Inexact Rounded
dsbem457 toSci  -0.10105E-97   -> -1.010E-98 Underflow Subnormal Inexact Rounded
dsbem458 toSci  -0.10107E-97   -> -1.011E-98 Underflow Subnormal Inexact Rounded
dsbem459 toSci  -0.10113E-97   -> -1.011E-98 Underflow Subnormal Inexact Rounded
dsbem460 toSci  -0.10115E-97   -> -1.012E-98 Underflow Subnormal Inexact Rounded
dsbem461 toSci  -0.10117E-97   -> -1.012E-98 Underflow Subnormal Inexact Rounded

-- '999s' cases
dsbem464 toSci  999999E-98         -> 9.99999E-93
dsbem465 toSci  99999.0E-97        -> 9.99990E-93
dsbem466 toSci  99999.E-97         -> 9.9999E-93
dsbem467 toSci  9999.9E-97         -> 9.9999E-94
dsbem468 toSci  999.99E-97         -> 9.9999E-95
dsbem469 toSci  99.999E-97         -> 9.9999E-96 Subnormal
dsbem470 toSci  9.9999E-97         -> 9.9999E-97 Subnormal
dsbem471 toSci  0.99999E-97        -> 1.0000E-97 Underflow Subnormal Inexact Rounded
dsbem472 toSci  0.099999E-97       -> 1.000E-98  Underflow Subnormal Inexact Rounded
dsbem473 toSci  0.0099999E-97      -> 1.00E-99   Underflow Subnormal Inexact Rounded
dsbem474 toSci  0.00099999E-97     -> 1.0E-100   Underflow Subnormal Inexact Rounded
dsbem475 toSci  0.000099999E-97    -> 1E-101     Underflow Subnormal Inexact Rounded
dsbem476 toSci  0.0000099999E-97   -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem477 toSci  0.00000099999E-97  -> 0E-101     Underflow Subnormal Inexact Rounded Clamped
dsbem478 toSci  0.000000099999E-97 -> 0E-101     Underflow Subnormal Inexact Rounded Clamped

-- Exponents with insignificant leading zeros
dsbas1001 toSci  1e999999999 -> Infinity Overflow Inexact Rounded
dsbas1002 toSci  1e0999999999 -> Infinity Overflow Inexact Rounded
dsbas1003 toSci  1e00999999999 -> Infinity Overflow Inexact Rounded
dsbas1004 toSci  1e000999999999 -> Infinity Overflow Inexact Rounded
dsbas1005 toSci  1e000000000000999999999 -> Infinity Overflow Inexact Rounded
dsbas1006 toSci  1e000000000001000000007 -> Infinity Overflow Inexact Rounded
dsbas1007 toSci  1e-999999999 -> 0E-101             Underflow Subnormal Inexact Rounded Clamped
dsbas1008 toSci  1e-0999999999 -> 0E-101            Underflow Subnormal Inexact Rounded Clamped
dsbas1009 toSci  1e-00999999999 -> 0E-101           Underflow Subnormal Inexact Rounded Clamped
dsbas1010 toSci  1e-000999999999 -> 0E-101          Underflow Subnormal Inexact Rounded Clamped
dsbas1011 toSci  1e-000000000000999999999 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped
dsbas1012 toSci  1e-000000000001000000007 -> 0E-101 Underflow Subnormal Inexact Rounded Clamped

-- check for double-rounded subnormals
dsbas1041 toSci     1.1152444E-96 ->  1.11524E-96 Inexact Rounded Subnormal Underflow
dsbas1042 toSci     1.1152445E-96 ->  1.11524E-96 Inexact Rounded Subnormal Underflow
dsbas1043 toSci     1.1152446E-96 ->  1.11524E-96 Inexact Rounded Subnormal Underflow

-- clamped zeros [see also clamp.decTest]
dsbas1075 toSci   0e+10000  ->  0E+90   Clamped
dsbas1076 toSci   0e-10000  ->  0E-101  Clamped
dsbas1077 toSci  -0e+10000  -> -0E+90   Clamped
dsbas1078 toSci  -0e-10000  -> -0E-101  Clamped

-- extreme values from next-wider
dsbas1101 toSci -9.999999999999999E+384 -> -Infinity Overflow Inexact Rounded
dsbas1102 toSci -1E-383 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped
dsbas1103 toSci -1E-398 -> -0E-101 Inexact Rounded Subnormal Underflow Clamped
dsbas1104 toSci -0 -> -0
dsbas1105 toSci +0 ->  0
dsbas1106 toSci +1E-398 ->  0E-101 Inexact Rounded Subnormal Underflow Clamped
dsbas1107 toSci +1E-383 ->  0E-101 Inexact Rounded Subnormal Underflow Clamped
dsbas1108 toSci +9.999999999999999E+384 ->  Infinity Overflow Inexact Rounded

-- narrowing case
dsbas1110 toSci 2.000000000000000E-99 -> 2.00E-99 Rounded Subnormal

Youez - 2016 - github.com/yon3zu
LinuXploit