���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/Strawberry/c/lib/python3.9/test/decimaltestdata/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/Strawberry/c/lib/python3.9/test/decimaltestdata/ddMultiply.decTest
------------------------------------------------------------------------
-- ddMultiply.decTest -- decDouble multiplication                     --
-- Copyright (c) IBM Corporation, 1981, 2008.  All rights reserved.   --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases"     --
-- at http://www2.hursley.ibm.com/decimal for the description of      --
-- these testcases.                                                   --
--                                                                    --
-- These testcases are experimental ('beta' versions), and they       --
-- may contain errors.  They are offered on an as-is basis.  In       --
-- particular, achieving the same results as the tests here is not    --
-- a guarantee that an implementation complies with any Standard      --
-- or specification.  The tests are not exhaustive.                   --
--                                                                    --
-- Please send comments, suggestions, and corrections to the author:  --
--   Mike Cowlishaw, IBM Fellow                                       --
--   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         --
--   mfc@uk.ibm.com                                                   --
------------------------------------------------------------------------
version: 2.59

-- This set of tests are for decDoubles only; all arguments are
-- representable in a decDouble
precision:   16
maxExponent: 384
minExponent: -383
extended:    1
clamp:       1
rounding:    half_even

-- sanity checks
ddmul000 multiply 2      2 -> 4
ddmul001 multiply 2      3 -> 6
ddmul002 multiply 5      1 -> 5
ddmul003 multiply 5      2 -> 10
ddmul004 multiply 1.20   2 -> 2.40
ddmul005 multiply 1.20   0 -> 0.00
ddmul006 multiply 1.20  -2 -> -2.40
ddmul007 multiply -1.20  2 -> -2.40
ddmul008 multiply -1.20  0 -> -0.00
ddmul009 multiply -1.20 -2 -> 2.40
ddmul010 multiply 5.09 7.1 -> 36.139
ddmul011 multiply 2.5    4 -> 10.0
ddmul012 multiply 2.50   4 -> 10.00
ddmul013 multiply 1.23456789 1.00000000 -> 1.234567890000000 Rounded
ddmul015 multiply 2.50   4 -> 10.00
ddmul016 multiply  9.999999999  9.999999999 ->  99.99999998000000 Inexact Rounded
ddmul017 multiply  9.999999999 -9.999999999 -> -99.99999998000000 Inexact Rounded
ddmul018 multiply -9.999999999  9.999999999 -> -99.99999998000000 Inexact Rounded
ddmul019 multiply -9.999999999 -9.999999999 ->  99.99999998000000 Inexact Rounded

-- zeros, etc.
ddmul021 multiply  0      0     ->  0
ddmul022 multiply  0     -0     -> -0
ddmul023 multiply -0      0     -> -0
ddmul024 multiply -0     -0     ->  0
ddmul025 multiply -0.0   -0.0   ->  0.00
ddmul026 multiply -0.0   -0.0   ->  0.00
ddmul027 multiply -0.0   -0.0   ->  0.00
ddmul028 multiply -0.0   -0.0   ->  0.00
ddmul030 multiply  5.00   1E-3  ->  0.00500
ddmul031 multiply  00.00  0.000 ->  0.00000
ddmul032 multiply  00.00  0E-3  ->  0.00000     -- rhs is 0
ddmul033 multiply  0E-3   00.00 ->  0.00000     -- lhs is 0
ddmul034 multiply -5.00   1E-3  -> -0.00500
ddmul035 multiply -00.00  0.000 -> -0.00000
ddmul036 multiply -00.00  0E-3  -> -0.00000     -- rhs is 0
ddmul037 multiply -0E-3   00.00 -> -0.00000     -- lhs is 0
ddmul038 multiply  5.00  -1E-3  -> -0.00500
ddmul039 multiply  00.00 -0.000 -> -0.00000
ddmul040 multiply  00.00 -0E-3  -> -0.00000     -- rhs is 0
ddmul041 multiply  0E-3  -00.00 -> -0.00000     -- lhs is 0
ddmul042 multiply -5.00  -1E-3  ->  0.00500
ddmul043 multiply -00.00 -0.000 ->  0.00000
ddmul044 multiply -00.00 -0E-3  ->  0.00000     -- rhs is 0
ddmul045 multiply -0E-3  -00.00 ->  0.00000     -- lhs is 0

-- examples from decarith
ddmul050 multiply 1.20 3        -> 3.60
ddmul051 multiply 7    3        -> 21
ddmul052 multiply 0.9  0.8      -> 0.72
ddmul053 multiply 0.9  -0       -> -0.0
ddmul054 multiply 654321 654321 -> 428135971041

ddmul060 multiply 123.45 1e7  ->  1.2345E+9
ddmul061 multiply 123.45 1e8  ->  1.2345E+10
ddmul062 multiply 123.45 1e+9 ->  1.2345E+11
ddmul063 multiply 123.45 1e10 ->  1.2345E+12
ddmul064 multiply 123.45 1e11 ->  1.2345E+13
ddmul065 multiply 123.45 1e12 ->  1.2345E+14
ddmul066 multiply 123.45 1e13 ->  1.2345E+15


-- test some intermediate lengths
--                    1234567890123456
ddmul080 multiply 0.1 1230123456456789     -> 123012345645678.9
ddmul084 multiply 0.1 1230123456456789     -> 123012345645678.9
ddmul090 multiply 1230123456456789     0.1 -> 123012345645678.9
ddmul094 multiply 1230123456456789     0.1 -> 123012345645678.9

-- test some more edge cases and carries
ddmul101 multiply 9 9   -> 81
ddmul102 multiply 9 90   -> 810
ddmul103 multiply 9 900   -> 8100
ddmul104 multiply 9 9000   -> 81000
ddmul105 multiply 9 90000   -> 810000
ddmul106 multiply 9 900000   -> 8100000
ddmul107 multiply 9 9000000   -> 81000000
ddmul108 multiply 9 90000000   -> 810000000
ddmul109 multiply 9 900000000   -> 8100000000
ddmul110 multiply 9 9000000000   -> 81000000000
ddmul111 multiply 9 90000000000   -> 810000000000
ddmul112 multiply 9 900000000000   -> 8100000000000
ddmul113 multiply 9 9000000000000   -> 81000000000000
ddmul114 multiply 9 90000000000000   -> 810000000000000
ddmul115 multiply 9 900000000000000   -> 8100000000000000
--ddmul116 multiply 9 9000000000000000   -> 81000000000000000
--ddmul117 multiply 9 90000000000000000   -> 810000000000000000
--ddmul118 multiply 9 900000000000000000   -> 8100000000000000000
--ddmul119 multiply 9 9000000000000000000   -> 81000000000000000000
--ddmul120 multiply 9 90000000000000000000   -> 810000000000000000000
--ddmul121 multiply 9 900000000000000000000   -> 8100000000000000000000
--ddmul122 multiply 9 9000000000000000000000   -> 81000000000000000000000
--ddmul123 multiply 9 90000000000000000000000   -> 810000000000000000000000
-- test some more edge cases without carries
ddmul131 multiply 3 3   -> 9
ddmul132 multiply 3 30   -> 90
ddmul133 multiply 3 300   -> 900
ddmul134 multiply 3 3000   -> 9000
ddmul135 multiply 3 30000   -> 90000
ddmul136 multiply 3 300000   -> 900000
ddmul137 multiply 3 3000000   -> 9000000
ddmul138 multiply 3 30000000   -> 90000000
ddmul139 multiply 3 300000000   -> 900000000
ddmul140 multiply 3 3000000000   -> 9000000000
ddmul141 multiply 3 30000000000   -> 90000000000
ddmul142 multiply 3 300000000000   -> 900000000000
ddmul143 multiply 3 3000000000000   -> 9000000000000
ddmul144 multiply 3 30000000000000   -> 90000000000000
ddmul145 multiply 3 300000000000000   -> 900000000000000

-- test some edge cases with exact rounding
ddmul301 multiply 9 9   -> 81
ddmul302 multiply 9 90   -> 810
ddmul303 multiply 9 900   -> 8100
ddmul304 multiply 9 9000   -> 81000
ddmul305 multiply 9 90000   -> 810000
ddmul306 multiply 9 900000   -> 8100000
ddmul307 multiply 9 9000000   -> 81000000
ddmul308 multiply 9 90000000   -> 810000000
ddmul309 multiply 9 900000000   -> 8100000000
ddmul310 multiply 9 9000000000   -> 81000000000
ddmul311 multiply 9 90000000000   -> 810000000000
ddmul312 multiply 9 900000000000   -> 8100000000000
ddmul313 multiply 9 9000000000000   -> 81000000000000
ddmul314 multiply 9 90000000000000   -> 810000000000000
ddmul315 multiply 9 900000000000000   -> 8100000000000000
ddmul316 multiply 9 9000000000000000   -> 8.100000000000000E+16  Rounded
ddmul317 multiply 90 9000000000000000   -> 8.100000000000000E+17  Rounded
ddmul318 multiply 900 9000000000000000   -> 8.100000000000000E+18  Rounded
ddmul319 multiply 9000 9000000000000000   -> 8.100000000000000E+19  Rounded
ddmul320 multiply 90000 9000000000000000   -> 8.100000000000000E+20  Rounded
ddmul321 multiply 900000 9000000000000000   -> 8.100000000000000E+21  Rounded
ddmul322 multiply 9000000 9000000000000000   -> 8.100000000000000E+22  Rounded
ddmul323 multiply 90000000 9000000000000000   -> 8.100000000000000E+23  Rounded

-- tryzeros cases
ddmul504  multiply  0E-260 1000E-260  -> 0E-398 Clamped
ddmul505  multiply  100E+260 0E+260   -> 0E+369 Clamped
-- 65K-1 case
ddmul506 multiply 77.1 850 -> 65535.0

-- mixed with zeros
ddmul541 multiply  0    -1     -> -0
ddmul542 multiply -0    -1     ->  0
ddmul543 multiply  0     1     ->  0
ddmul544 multiply -0     1     -> -0
ddmul545 multiply -1     0     -> -0
ddmul546 multiply -1    -0     ->  0
ddmul547 multiply  1     0     ->  0
ddmul548 multiply  1    -0     -> -0

ddmul551 multiply  0.0  -1     -> -0.0
ddmul552 multiply -0.0  -1     ->  0.0
ddmul553 multiply  0.0   1     ->  0.0
ddmul554 multiply -0.0   1     -> -0.0
ddmul555 multiply -1.0   0     -> -0.0
ddmul556 multiply -1.0  -0     ->  0.0
ddmul557 multiply  1.0   0     ->  0.0
ddmul558 multiply  1.0  -0     -> -0.0

ddmul561 multiply  0    -1.0   -> -0.0
ddmul562 multiply -0    -1.0   ->  0.0
ddmul563 multiply  0     1.0   ->  0.0
ddmul564 multiply -0     1.0   -> -0.0
ddmul565 multiply -1     0.0   -> -0.0
ddmul566 multiply -1    -0.0   ->  0.0
ddmul567 multiply  1     0.0   ->  0.0
ddmul568 multiply  1    -0.0   -> -0.0

ddmul571 multiply  0.0  -1.0   -> -0.00
ddmul572 multiply -0.0  -1.0   ->  0.00
ddmul573 multiply  0.0   1.0   ->  0.00
ddmul574 multiply -0.0   1.0   -> -0.00
ddmul575 multiply -1.0   0.0   -> -0.00
ddmul576 multiply -1.0  -0.0   ->  0.00
ddmul577 multiply  1.0   0.0   ->  0.00
ddmul578 multiply  1.0  -0.0   -> -0.00


-- Specials
ddmul580 multiply  Inf  -Inf   -> -Infinity
ddmul581 multiply  Inf  -1000  -> -Infinity
ddmul582 multiply  Inf  -1     -> -Infinity
ddmul583 multiply  Inf  -0     ->  NaN  Invalid_operation
ddmul584 multiply  Inf   0     ->  NaN  Invalid_operation
ddmul585 multiply  Inf   1     ->  Infinity
ddmul586 multiply  Inf   1000  ->  Infinity
ddmul587 multiply  Inf   Inf   ->  Infinity
ddmul588 multiply -1000  Inf   -> -Infinity
ddmul589 multiply -Inf   Inf   -> -Infinity
ddmul590 multiply -1     Inf   -> -Infinity
ddmul591 multiply -0     Inf   ->  NaN  Invalid_operation
ddmul592 multiply  0     Inf   ->  NaN  Invalid_operation
ddmul593 multiply  1     Inf   ->  Infinity
ddmul594 multiply  1000  Inf   ->  Infinity
ddmul595 multiply  Inf   Inf   ->  Infinity

ddmul600 multiply -Inf  -Inf   ->  Infinity
ddmul601 multiply -Inf  -1000  ->  Infinity
ddmul602 multiply -Inf  -1     ->  Infinity
ddmul603 multiply -Inf  -0     ->  NaN  Invalid_operation
ddmul604 multiply -Inf   0     ->  NaN  Invalid_operation
ddmul605 multiply -Inf   1     -> -Infinity
ddmul606 multiply -Inf   1000  -> -Infinity
ddmul607 multiply -Inf   Inf   -> -Infinity
ddmul608 multiply -1000  Inf   -> -Infinity
ddmul609 multiply -Inf  -Inf   ->  Infinity
ddmul610 multiply -1    -Inf   ->  Infinity
ddmul611 multiply -0    -Inf   ->  NaN  Invalid_operation
ddmul612 multiply  0    -Inf   ->  NaN  Invalid_operation
ddmul613 multiply  1    -Inf   -> -Infinity
ddmul614 multiply  1000 -Inf   -> -Infinity
ddmul615 multiply  Inf  -Inf   -> -Infinity

ddmul621 multiply  NaN -Inf    ->  NaN
ddmul622 multiply  NaN -1000   ->  NaN
ddmul623 multiply  NaN -1      ->  NaN
ddmul624 multiply  NaN -0      ->  NaN
ddmul625 multiply  NaN  0      ->  NaN
ddmul626 multiply  NaN  1      ->  NaN
ddmul627 multiply  NaN  1000   ->  NaN
ddmul628 multiply  NaN  Inf    ->  NaN
ddmul629 multiply  NaN  NaN    ->  NaN
ddmul630 multiply -Inf  NaN    ->  NaN
ddmul631 multiply -1000 NaN    ->  NaN
ddmul632 multiply -1    NaN    ->  NaN
ddmul633 multiply -0    NaN    ->  NaN
ddmul634 multiply  0    NaN    ->  NaN
ddmul635 multiply  1    NaN    ->  NaN
ddmul636 multiply  1000 NaN    ->  NaN
ddmul637 multiply  Inf  NaN    ->  NaN

ddmul641 multiply  sNaN -Inf   ->  NaN  Invalid_operation
ddmul642 multiply  sNaN -1000  ->  NaN  Invalid_operation
ddmul643 multiply  sNaN -1     ->  NaN  Invalid_operation
ddmul644 multiply  sNaN -0     ->  NaN  Invalid_operation
ddmul645 multiply  sNaN  0     ->  NaN  Invalid_operation
ddmul646 multiply  sNaN  1     ->  NaN  Invalid_operation
ddmul647 multiply  sNaN  1000  ->  NaN  Invalid_operation
ddmul648 multiply  sNaN  NaN   ->  NaN  Invalid_operation
ddmul649 multiply  sNaN sNaN   ->  NaN  Invalid_operation
ddmul650 multiply  NaN  sNaN   ->  NaN  Invalid_operation
ddmul651 multiply -Inf  sNaN   ->  NaN  Invalid_operation
ddmul652 multiply -1000 sNaN   ->  NaN  Invalid_operation
ddmul653 multiply -1    sNaN   ->  NaN  Invalid_operation
ddmul654 multiply -0    sNaN   ->  NaN  Invalid_operation
ddmul655 multiply  0    sNaN   ->  NaN  Invalid_operation
ddmul656 multiply  1    sNaN   ->  NaN  Invalid_operation
ddmul657 multiply  1000 sNaN   ->  NaN  Invalid_operation
ddmul658 multiply  Inf  sNaN   ->  NaN  Invalid_operation
ddmul659 multiply  NaN  sNaN   ->  NaN  Invalid_operation

-- propagating NaNs
ddmul661 multiply  NaN9 -Inf   ->  NaN9
ddmul662 multiply  NaN8  999   ->  NaN8
ddmul663 multiply  NaN71 Inf   ->  NaN71
ddmul664 multiply  NaN6  NaN5  ->  NaN6
ddmul665 multiply -Inf   NaN4  ->  NaN4
ddmul666 multiply -999   NaN33 ->  NaN33
ddmul667 multiply  Inf   NaN2  ->  NaN2

ddmul671 multiply  sNaN99 -Inf    ->  NaN99 Invalid_operation
ddmul672 multiply  sNaN98 -11     ->  NaN98 Invalid_operation
ddmul673 multiply  sNaN97  NaN    ->  NaN97 Invalid_operation
ddmul674 multiply  sNaN16 sNaN94  ->  NaN16 Invalid_operation
ddmul675 multiply  NaN95  sNaN93  ->  NaN93 Invalid_operation
ddmul676 multiply -Inf    sNaN92  ->  NaN92 Invalid_operation
ddmul677 multiply  088    sNaN91  ->  NaN91 Invalid_operation
ddmul678 multiply  Inf    sNaN90  ->  NaN90 Invalid_operation
ddmul679 multiply  NaN    sNaN89  ->  NaN89 Invalid_operation

ddmul681 multiply -NaN9 -Inf   -> -NaN9
ddmul682 multiply -NaN8  999   -> -NaN8
ddmul683 multiply -NaN71 Inf   -> -NaN71
ddmul684 multiply -NaN6 -NaN5  -> -NaN6
ddmul685 multiply -Inf  -NaN4  -> -NaN4
ddmul686 multiply -999  -NaN33 -> -NaN33
ddmul687 multiply  Inf  -NaN2  -> -NaN2

ddmul691 multiply -sNaN99 -Inf    -> -NaN99 Invalid_operation
ddmul692 multiply -sNaN98 -11     -> -NaN98 Invalid_operation
ddmul693 multiply -sNaN97  NaN    -> -NaN97 Invalid_operation
ddmul694 multiply -sNaN16 -sNaN94 -> -NaN16 Invalid_operation
ddmul695 multiply -NaN95  -sNaN93 -> -NaN93 Invalid_operation
ddmul696 multiply -Inf    -sNaN92 -> -NaN92 Invalid_operation
ddmul697 multiply  088    -sNaN91 -> -NaN91 Invalid_operation
ddmul698 multiply  Inf    -sNaN90 -> -NaN90 Invalid_operation
ddmul699 multiply -NaN    -sNaN89 -> -NaN89 Invalid_operation

ddmul701 multiply -NaN  -Inf   -> -NaN
ddmul702 multiply -NaN   999   -> -NaN
ddmul703 multiply -NaN   Inf   -> -NaN
ddmul704 multiply -NaN  -NaN   -> -NaN
ddmul705 multiply -Inf  -NaN0  -> -NaN
ddmul706 multiply -999  -NaN   -> -NaN
ddmul707 multiply  Inf  -NaN   -> -NaN

ddmul711 multiply -sNaN   -Inf    -> -NaN Invalid_operation
ddmul712 multiply -sNaN   -11     -> -NaN Invalid_operation
ddmul713 multiply -sNaN00  NaN    -> -NaN Invalid_operation
ddmul714 multiply -sNaN   -sNaN   -> -NaN Invalid_operation
ddmul715 multiply -NaN    -sNaN   -> -NaN Invalid_operation
ddmul716 multiply -Inf    -sNaN   -> -NaN Invalid_operation
ddmul717 multiply  088    -sNaN   -> -NaN Invalid_operation
ddmul718 multiply  Inf    -sNaN   -> -NaN Invalid_operation
ddmul719 multiply -NaN    -sNaN   -> -NaN Invalid_operation

-- overflow and underflow tests .. note subnormal results
-- signs
ddmul751 multiply  1e+277  1e+311 ->  Infinity Overflow Inexact Rounded
ddmul752 multiply  1e+277 -1e+311 -> -Infinity Overflow Inexact Rounded
ddmul753 multiply -1e+277  1e+311 -> -Infinity Overflow Inexact Rounded
ddmul754 multiply -1e+277 -1e+311 ->  Infinity Overflow Inexact Rounded
ddmul755 multiply  1e-277  1e-311 ->  0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul756 multiply  1e-277 -1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul757 multiply -1e-277  1e-311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul758 multiply -1e-277 -1e-311 ->  0E-398 Underflow Subnormal Inexact Rounded Clamped

-- 'subnormal' boundary (all hard underflow or overflow in base arithmetic)
ddmul760 multiply 1e-291 1e-101 -> 1E-392 Subnormal
ddmul761 multiply 1e-291 1e-102 -> 1E-393 Subnormal
ddmul762 multiply 1e-291 1e-103 -> 1E-394 Subnormal
ddmul763 multiply 1e-291 1e-104 -> 1E-395 Subnormal
ddmul764 multiply 1e-291 1e-105 -> 1E-396 Subnormal
ddmul765 multiply 1e-291 1e-106 -> 1E-397 Subnormal
ddmul766 multiply 1e-291 1e-107 -> 1E-398 Subnormal
ddmul767 multiply 1e-291 1e-108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul768 multiply 1e-291 1e-109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul769 multiply 1e-291 1e-110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
ddmul770 multiply 1e+60 1e+321 -> 1.000000000000E+381  Clamped
ddmul771 multiply 1e+60 1e+322 -> 1.0000000000000E+382  Clamped
ddmul772 multiply 1e+60 1e+323 -> 1.00000000000000E+383  Clamped
ddmul773 multiply 1e+60 1e+324 -> 1.000000000000000E+384  Clamped
ddmul774 multiply 1e+60 1e+325 -> Infinity Overflow Inexact Rounded
ddmul775 multiply 1e+60 1e+326 -> Infinity Overflow Inexact Rounded
ddmul776 multiply 1e+60 1e+327 -> Infinity Overflow Inexact Rounded
ddmul777 multiply 1e+60 1e+328 -> Infinity Overflow Inexact Rounded
ddmul778 multiply 1e+60 1e+329 -> Infinity Overflow Inexact Rounded
ddmul779 multiply 1e+60 1e+330 -> Infinity Overflow Inexact Rounded

ddmul801 multiply  1.0000E-394  1     -> 1.0000E-394 Subnormal
ddmul802 multiply  1.000E-394   1e-1  -> 1.000E-395  Subnormal
ddmul803 multiply  1.00E-394    1e-2  -> 1.00E-396   Subnormal
ddmul804 multiply  1.0E-394     1e-3  -> 1.0E-397    Subnormal
ddmul805 multiply  1.0E-394     1e-4  -> 1E-398     Subnormal Rounded
ddmul806 multiply  1.3E-394     1e-4  -> 1E-398     Underflow Subnormal Inexact Rounded
ddmul807 multiply  1.5E-394     1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul808 multiply  1.7E-394     1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul809 multiply  2.3E-394     1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul810 multiply  2.5E-394     1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul811 multiply  2.7E-394     1e-4  -> 3E-398     Underflow Subnormal Inexact Rounded
ddmul812 multiply  1.49E-394    1e-4  -> 1E-398     Underflow Subnormal Inexact Rounded
ddmul813 multiply  1.50E-394    1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul814 multiply  1.51E-394    1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul815 multiply  2.49E-394    1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul816 multiply  2.50E-394    1e-4  -> 2E-398     Underflow Subnormal Inexact Rounded
ddmul817 multiply  2.51E-394    1e-4  -> 3E-398     Underflow Subnormal Inexact Rounded

ddmul818 multiply  1E-394       1e-4  -> 1E-398     Subnormal
ddmul819 multiply  3E-394       1e-5  -> 0E-398     Underflow Subnormal Inexact Rounded Clamped
ddmul820 multiply  5E-394       1e-5  -> 0E-398     Underflow Subnormal Inexact Rounded Clamped
ddmul821 multiply  7E-394       1e-5  -> 1E-398     Underflow Subnormal Inexact Rounded
ddmul822 multiply  9E-394       1e-5  -> 1E-398     Underflow Subnormal Inexact Rounded
ddmul823 multiply  9.9E-394     1e-5  -> 1E-398     Underflow Subnormal Inexact Rounded

ddmul824 multiply  1E-394      -1e-4  -> -1E-398    Subnormal
ddmul825 multiply  3E-394      -1e-5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped
ddmul826 multiply -5E-394       1e-5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped
ddmul827 multiply  7E-394      -1e-5  -> -1E-398    Underflow Subnormal Inexact Rounded
ddmul828 multiply -9E-394       1e-5  -> -1E-398    Underflow Subnormal Inexact Rounded
ddmul829 multiply  9.9E-394    -1e-5  -> -1E-398    Underflow Subnormal Inexact Rounded
ddmul830 multiply  3.0E-394    -1e-5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped

ddmul831 multiply  1.0E-199     1e-200 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
ddmul832 multiply  1.0E-199     1e-199 -> 1E-398    Subnormal Rounded
ddmul833 multiply  1.0E-199     1e-198 -> 1.0E-397    Subnormal
ddmul834 multiply  2.0E-199     2e-198 -> 4.0E-397    Subnormal
ddmul835 multiply  4.0E-199     4e-198 -> 1.60E-396   Subnormal
ddmul836 multiply 10.0E-199    10e-198 -> 1.000E-395  Subnormal
ddmul837 multiply 30.0E-199    30e-198 -> 9.000E-395  Subnormal
ddmul838 multiply 40.0E-199    40e-188 -> 1.6000E-384 Subnormal
ddmul839 multiply 40.0E-199    40e-187 -> 1.6000E-383
ddmul840 multiply 40.0E-199    40e-186 -> 1.6000E-382

-- Long operand overflow may be a different path
ddmul870 multiply 100  9.999E+383         ->  Infinity Inexact Overflow Rounded
ddmul871 multiply 100 -9.999E+383     -> -Infinity Inexact Overflow Rounded
ddmul872 multiply      9.999E+383 100 ->  Infinity Inexact Overflow Rounded
ddmul873 multiply     -9.999E+383 100 -> -Infinity Inexact Overflow Rounded

-- check for double-rounded subnormals
ddmul881 multiply  1.2347E-355 1.2347E-40  ->  1.524E-395 Inexact Rounded Subnormal Underflow
ddmul882 multiply  1.234E-355 1.234E-40    ->  1.523E-395 Inexact Rounded Subnormal Underflow
ddmul883 multiply  1.23E-355  1.23E-40     ->  1.513E-395 Inexact Rounded Subnormal Underflow
ddmul884 multiply  1.2E-355   1.2E-40      ->  1.44E-395  Subnormal
ddmul885 multiply  1.2E-355   1.2E-41      ->  1.44E-396  Subnormal
ddmul886 multiply  1.2E-355   1.2E-42      ->  1.4E-397   Subnormal Inexact Rounded Underflow
ddmul887 multiply  1.2E-355   1.3E-42      ->  1.6E-397   Subnormal Inexact Rounded Underflow
ddmul888 multiply  1.3E-355   1.3E-42      ->  1.7E-397   Subnormal Inexact Rounded Underflow
ddmul889 multiply  1.3E-355   1.3E-43      ->    2E-398   Subnormal Inexact Rounded Underflow
ddmul890 multiply  1.3E-356   1.3E-43      ->    0E-398   Clamped Subnormal Inexact Rounded Underflow

ddmul891 multiply  1.2345E-39   1.234E-355 ->  1.5234E-394 Inexact Rounded Subnormal Underflow
ddmul892 multiply  1.23456E-39  1.234E-355 ->  1.5234E-394 Inexact Rounded Subnormal Underflow
ddmul893 multiply  1.2345E-40   1.234E-355 ->  1.523E-395  Inexact Rounded Subnormal Underflow
ddmul894 multiply  1.23456E-40  1.234E-355 ->  1.523E-395  Inexact Rounded Subnormal Underflow
ddmul895 multiply  1.2345E-41   1.234E-355 ->  1.52E-396   Inexact Rounded Subnormal Underflow
ddmul896 multiply  1.23456E-41  1.234E-355 ->  1.52E-396   Inexact Rounded Subnormal Underflow

-- Now explore the case where we get a normal result with Underflow
--                                                        1 234567890123456
ddmul900 multiply  0.3000000000E-191 0.3000000000E-191 -> 9.00000000000000E-384 Subnormal Rounded
ddmul901 multiply  0.3000000001E-191 0.3000000001E-191 -> 9.00000000600000E-384 Underflow Inexact Subnormal Rounded
ddmul902 multiply  9.999999999999999E-383  0.0999999999999    -> 9.99999999999000E-384 Underflow Inexact Subnormal Rounded
ddmul903 multiply  9.999999999999999E-383  0.09999999999999   -> 9.99999999999900E-384 Underflow Inexact Subnormal Rounded
ddmul904 multiply  9.999999999999999E-383  0.099999999999999  -> 9.99999999999990E-384 Underflow Inexact Subnormal Rounded
ddmul905 multiply  9.999999999999999E-383  0.0999999999999999 -> 9.99999999999999E-384 Underflow Inexact Subnormal Rounded
-- The next rounds to Nmin (b**emin); this is the distinguishing case
-- for detecting tininess (before or after rounding) -- if after
-- rounding then the result would be the same, but the Underflow flag
-- would not be set
ddmul906 multiply  9.999999999999999E-383  0.09999999999999999     -> 1.000000000000000E-383 Underflow Inexact Subnormal Rounded
-- prove those operands were exact
ddmul907 multiply  9.999999999999999E-383  1                       -> 9.999999999999999E-383
ddmul908 multiply                       1  0.09999999999999999     -> 0.09999999999999999

-- reducing tiniest
ddmul910 multiply 1e-398 0.99 -> 1E-398 Subnormal Inexact Rounded Underflow
ddmul911 multiply 1e-398 0.75 -> 1E-398 Subnormal Inexact Rounded Underflow
ddmul912 multiply 1e-398 0.5  -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
ddmul913 multiply 1e-398 0.25 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped
ddmul914 multiply 1e-398 0.01 -> 0E-398 Subnormal Inexact Rounded Underflow Clamped

-- hugest
ddmul920 multiply  9999999999999999 9999999999999999 -> 9.999999999999998E+31 Inexact Rounded

-- power-of-ten edge cases
ddmul1001 multiply  1      10               -> 10
ddmul1002 multiply  1      100              -> 100
ddmul1003 multiply  1      1000             -> 1000
ddmul1004 multiply  1      10000            -> 10000
ddmul1005 multiply  1      100000           -> 100000
ddmul1006 multiply  1      1000000          -> 1000000
ddmul1007 multiply  1      10000000         -> 10000000
ddmul1008 multiply  1      100000000        -> 100000000
ddmul1009 multiply  1      1000000000       -> 1000000000
ddmul1010 multiply  1      10000000000      -> 10000000000
ddmul1011 multiply  1      100000000000     -> 100000000000
ddmul1012 multiply  1      1000000000000    -> 1000000000000
ddmul1013 multiply  1      10000000000000   -> 10000000000000
ddmul1014 multiply  1      100000000000000  -> 100000000000000
ddmul1015 multiply  1      1000000000000000 -> 1000000000000000
ddmul1021 multiply  10     1                -> 10
ddmul1022 multiply  10     10               -> 100
ddmul1023 multiply  10     100              -> 1000
ddmul1024 multiply  10     1000             -> 10000
ddmul1025 multiply  10     10000            -> 100000
ddmul1026 multiply  10     100000           -> 1000000
ddmul1027 multiply  10     1000000          -> 10000000
ddmul1028 multiply  10     10000000         -> 100000000
ddmul1029 multiply  10     100000000        -> 1000000000
ddmul1030 multiply  10     1000000000       -> 10000000000
ddmul1031 multiply  10     10000000000      -> 100000000000
ddmul1032 multiply  10     100000000000     -> 1000000000000
ddmul1033 multiply  10     1000000000000    -> 10000000000000
ddmul1034 multiply  10     10000000000000   -> 100000000000000
ddmul1035 multiply  10     100000000000000  -> 1000000000000000
ddmul1041 multiply  100    0.1              -> 10.0
ddmul1042 multiply  100    1                -> 100
ddmul1043 multiply  100    10               -> 1000
ddmul1044 multiply  100    100              -> 10000
ddmul1045 multiply  100    1000             -> 100000
ddmul1046 multiply  100    10000            -> 1000000
ddmul1047 multiply  100    100000           -> 10000000
ddmul1048 multiply  100    1000000          -> 100000000
ddmul1049 multiply  100    10000000         -> 1000000000
ddmul1050 multiply  100    100000000        -> 10000000000
ddmul1051 multiply  100    1000000000       -> 100000000000
ddmul1052 multiply  100    10000000000      -> 1000000000000
ddmul1053 multiply  100    100000000000     -> 10000000000000
ddmul1054 multiply  100    1000000000000    -> 100000000000000
ddmul1055 multiply  100    10000000000000   -> 1000000000000000
ddmul1061 multiply  1000   0.01             -> 10.00
ddmul1062 multiply  1000   0.1              -> 100.0
ddmul1063 multiply  1000   1                -> 1000
ddmul1064 multiply  1000   10               -> 10000
ddmul1065 multiply  1000   100              -> 100000
ddmul1066 multiply  1000   1000             -> 1000000
ddmul1067 multiply  1000   10000            -> 10000000
ddmul1068 multiply  1000   100000           -> 100000000
ddmul1069 multiply  1000   1000000          -> 1000000000
ddmul1070 multiply  1000   10000000         -> 10000000000
ddmul1071 multiply  1000   100000000        -> 100000000000
ddmul1072 multiply  1000   1000000000       -> 1000000000000
ddmul1073 multiply  1000   10000000000      -> 10000000000000
ddmul1074 multiply  1000   100000000000     -> 100000000000000
ddmul1075 multiply  1000   1000000000000    -> 1000000000000000
ddmul1081 multiply  10000  0.001            -> 10.000
ddmul1082 multiply  10000  0.01             -> 100.00
ddmul1083 multiply  10000  0.1              -> 1000.0
ddmul1084 multiply  10000  1                -> 10000
ddmul1085 multiply  10000  10               -> 100000
ddmul1086 multiply  10000  100              -> 1000000
ddmul1087 multiply  10000  1000             -> 10000000
ddmul1088 multiply  10000  10000            -> 100000000
ddmul1089 multiply  10000  100000           -> 1000000000
ddmul1090 multiply  10000  1000000          -> 10000000000
ddmul1091 multiply  10000  10000000         -> 100000000000
ddmul1092 multiply  10000  100000000        -> 1000000000000
ddmul1093 multiply  10000  1000000000       -> 10000000000000
ddmul1094 multiply  10000  10000000000      -> 100000000000000
ddmul1095 multiply  10000  100000000000     -> 1000000000000000

ddmul1097 multiply  10000   99999999999     ->  999999999990000
ddmul1098 multiply  10000   99999999999     ->  999999999990000


-- Null tests
ddmul9990 multiply 10  # -> NaN Invalid_operation
ddmul9991 multiply  # 10 -> NaN Invalid_operation


Youez - 2016 - github.com/yon3zu
LinuXploit