���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/Strawberry/c/lib/python3.9/test/decimaltestdata/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/Strawberry/c/lib/python3.9/test/decimaltestdata/ddDivide.decTest
------------------------------------------------------------------------
-- ddDivide.decTest -- decDouble division                             --
-- Copyright (c) IBM Corporation, 1981, 2008.  All rights reserved.   --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases"     --
-- at http://www2.hursley.ibm.com/decimal for the description of      --
-- these testcases.                                                   --
--                                                                    --
-- These testcases are experimental ('beta' versions), and they       --
-- may contain errors.  They are offered on an as-is basis.  In       --
-- particular, achieving the same results as the tests here is not    --
-- a guarantee that an implementation complies with any Standard      --
-- or specification.  The tests are not exhaustive.                   --
--                                                                    --
-- Please send comments, suggestions, and corrections to the author:  --
--   Mike Cowlishaw, IBM Fellow                                       --
--   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         --
--   mfc@uk.ibm.com                                                   --
------------------------------------------------------------------------
version: 2.59

precision:   16
maxExponent: 384
minExponent: -383
extended:    1
clamp:       1
rounding:    half_even

-- sanity checks
dddiv001 divide  1     1    ->  1
dddiv002 divide  2     1    ->  2
dddiv003 divide  1     2    ->  0.5
dddiv004 divide  2     2    ->  1
dddiv005 divide  0     1    ->  0
dddiv006 divide  0     2    ->  0
dddiv007 divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv008 divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv009 divide  3     3    ->  1

dddiv010 divide  2.4   1    ->  2.4
dddiv011 divide  2.4   -1   ->  -2.4
dddiv012 divide  -2.4  1    ->  -2.4
dddiv013 divide  -2.4  -1   ->  2.4
dddiv014 divide  2.40  1    ->  2.40
dddiv015 divide  2.400 1    ->  2.400
dddiv016 divide  2.4   2    ->  1.2
dddiv017 divide  2.400 2    ->  1.200
dddiv018 divide  2.    2    ->  1
dddiv019 divide  20    20   ->  1

dddiv020 divide  187   187    ->  1
dddiv021 divide  5     2      ->  2.5
dddiv022 divide  50    20     ->  2.5
dddiv023 divide  500   200    ->  2.5
dddiv024 divide  50.0  20.0   ->  2.5
dddiv025 divide  5.00  2.00   ->  2.5
dddiv026 divide  5     2.0    ->  2.5
dddiv027 divide  5     2.000  ->  2.5
dddiv028 divide  5     0.20   ->  25
dddiv029 divide  5     0.200  ->  25
dddiv030 divide  10    1      ->  10
dddiv031 divide  100   1      ->  100
dddiv032 divide  1000  1      ->  1000
dddiv033 divide  1000  100    ->  10

dddiv035 divide  1     2      ->  0.5
dddiv036 divide  1     4      ->  0.25
dddiv037 divide  1     8      ->  0.125
dddiv038 divide  1     16     ->  0.0625
dddiv039 divide  1     32     ->  0.03125
dddiv040 divide  1     64     ->  0.015625
dddiv041 divide  1    -2      ->  -0.5
dddiv042 divide  1    -4      ->  -0.25
dddiv043 divide  1    -8      ->  -0.125
dddiv044 divide  1    -16     ->  -0.0625
dddiv045 divide  1    -32     ->  -0.03125
dddiv046 divide  1    -64     ->  -0.015625
dddiv047 divide -1     2      ->  -0.5
dddiv048 divide -1     4      ->  -0.25
dddiv049 divide -1     8      ->  -0.125
dddiv050 divide -1     16     ->  -0.0625
dddiv051 divide -1     32     ->  -0.03125
dddiv052 divide -1     64     ->  -0.015625
dddiv053 divide -1    -2      ->  0.5
dddiv054 divide -1    -4      ->  0.25
dddiv055 divide -1    -8      ->  0.125
dddiv056 divide -1    -16     ->  0.0625
dddiv057 divide -1    -32     ->  0.03125
dddiv058 divide -1    -64     ->  0.015625

-- bcdTime
dddiv060 divide  1 7                   -> 0.1428571428571429 Inexact Rounded
dddiv061 divide 1.2345678  1.9876543   -> 0.6211179680490717 Inexact Rounded

--               1234567890123456
dddiv071 divide  9999999999999999 1  ->  9999999999999999
dddiv072 divide  999999999999999  1  ->  999999999999999
dddiv073 divide  99999999999999   1  ->  99999999999999
dddiv074 divide  9999999999999    1  ->  9999999999999
dddiv075 divide  999999999999     1  ->  999999999999
dddiv076 divide  99999999999      1  ->  99999999999
dddiv077 divide  9999999999       1  ->  9999999999
dddiv078 divide  999999999        1  ->  999999999
dddiv079 divide  99999999         1  ->  99999999
dddiv080 divide  9999999          1  ->  9999999
dddiv081 divide  999999           1  ->  999999
dddiv082 divide  99999            1  ->  99999
dddiv083 divide  9999             1  ->  9999
dddiv084 divide  999              1  ->  999
dddiv085 divide  99               1  ->  99
dddiv086 divide  9                1  ->  9

dddiv090 divide  0.            1    ->  0
dddiv091 divide  .0            1    ->  0.0
dddiv092 divide  0.00          1    ->  0.00
dddiv093 divide  0.00E+9       1    ->  0E+7
dddiv094 divide  0.0000E-50    1    ->  0E-54

dddiv095 divide  1            1E-8  ->  1E+8
dddiv096 divide  1            1E-9  ->  1E+9
dddiv097 divide  1            1E-10 ->  1E+10
dddiv098 divide  1            1E-11 ->  1E+11
dddiv099 divide  1            1E-12 ->  1E+12

dddiv100 divide  1  1   -> 1
dddiv101 divide  1  2   -> 0.5
dddiv102 divide  1  3   -> 0.3333333333333333 Inexact Rounded
dddiv103 divide  1  4   -> 0.25
dddiv104 divide  1  5   -> 0.2
dddiv105 divide  1  6   -> 0.1666666666666667 Inexact Rounded
dddiv106 divide  1  7   -> 0.1428571428571429 Inexact Rounded
dddiv107 divide  1  8   -> 0.125
dddiv108 divide  1  9   -> 0.1111111111111111 Inexact Rounded
dddiv109 divide  1  10  -> 0.1
dddiv110 divide  1  1   -> 1
dddiv111 divide  2  1   -> 2
dddiv112 divide  3  1   -> 3
dddiv113 divide  4  1   -> 4
dddiv114 divide  5  1   -> 5
dddiv115 divide  6  1   -> 6
dddiv116 divide  7  1   -> 7
dddiv117 divide  8  1   -> 8
dddiv118 divide  9  1   -> 9
dddiv119 divide  10 1   -> 10

dddiv120 divide  3E+1 0.001  -> 3E+4
dddiv121 divide  2.200 2     -> 1.100

dddiv130 divide  12345  4.999  ->  2469.493898779756    Inexact Rounded
dddiv131 divide  12345  4.99   ->  2473.947895791583    Inexact Rounded
dddiv132 divide  12345  4.9    ->  2519.387755102041    Inexact Rounded
dddiv133 divide  12345  5      ->  2469
dddiv134 divide  12345  5.1    ->  2420.588235294118    Inexact Rounded
dddiv135 divide  12345  5.01   ->  2464.071856287425    Inexact Rounded
dddiv136 divide  12345  5.001  ->  2468.506298740252    Inexact Rounded

-- test possibly imprecise results
dddiv220 divide 391   597 ->  0.6549413735343384  Inexact Rounded
dddiv221 divide 391  -597 -> -0.6549413735343384  Inexact Rounded
dddiv222 divide -391  597 -> -0.6549413735343384  Inexact Rounded
dddiv223 divide -391 -597 ->  0.6549413735343384  Inexact Rounded

-- test some cases that are close to exponent overflow, some with coefficient padding
dddiv270 divide 1 1e384                  -> 1E-384                 Subnormal
dddiv271 divide 1 0.9e384                -> 1.11111111111111E-384  Rounded Inexact Subnormal Underflow
dddiv272 divide 1 0.99e384               -> 1.01010101010101E-384  Rounded Inexact Subnormal Underflow
dddiv273 divide 1 0.9999999999999999e384 -> 1.00000000000000E-384  Rounded Inexact Subnormal Underflow
dddiv274 divide 9e384    1               -> 9.000000000000000E+384 Clamped
dddiv275 divide 9.9e384  1               -> 9.900000000000000E+384 Clamped
dddiv276 divide 9.99e384 1               -> 9.990000000000000E+384 Clamped
dddiv277 divide 9.9999999999999e384 1    -> 9.999999999999900E+384 Clamped
dddiv278 divide 9.99999999999999e384 1   -> 9.999999999999990E+384 Clamped
dddiv279 divide 9.999999999999999e384 1  -> 9.999999999999999E+384

dddiv285 divide 9.9e384  1.1              -> 9.000000000000000E+384 Clamped
dddiv286 divide 9.99e384 1.1              -> 9.081818181818182E+384 Inexact Rounded
dddiv287 divide 9.9999999999999e384 1.1   -> 9.090909090909000E+384 Clamped
dddiv288 divide 9.99999999999999e384 1.1  -> 9.090909090909082E+384 Inexact Rounded
dddiv289 divide 9.999999999999999e384 1.1 -> 9.090909090909090E+384 Clamped


-- Divide into 0 tests
dddiv301 divide    0    7     -> 0
dddiv302 divide    0    7E-5  -> 0E+5
dddiv303 divide    0    7E-1  -> 0E+1
dddiv304 divide    0    7E+1  -> 0.0
dddiv305 divide    0    7E+5  -> 0.00000
dddiv306 divide    0    7E+6  -> 0.000000
dddiv307 divide    0    7E+7  -> 0E-7
dddiv308 divide    0   70E-5  -> 0E+5
dddiv309 divide    0   70E-1  -> 0E+1
dddiv310 divide    0   70E+0  -> 0
dddiv311 divide    0   70E+1  -> 0.0
dddiv312 divide    0   70E+5  -> 0.00000
dddiv313 divide    0   70E+6  -> 0.000000
dddiv314 divide    0   70E+7  -> 0E-7
dddiv315 divide    0  700E-5  -> 0E+5
dddiv316 divide    0  700E-1  -> 0E+1
dddiv317 divide    0  700E+0  -> 0
dddiv318 divide    0  700E+1  -> 0.0
dddiv319 divide    0  700E+5  -> 0.00000
dddiv320 divide    0  700E+6  -> 0.000000
dddiv321 divide    0  700E+7  -> 0E-7
dddiv322 divide    0  700E+77 -> 0E-77

dddiv331 divide 0E-3    7E-5  -> 0E+2
dddiv332 divide 0E-3    7E-1  -> 0.00
dddiv333 divide 0E-3    7E+1  -> 0.0000
dddiv334 divide 0E-3    7E+5  -> 0E-8
dddiv335 divide 0E-1    7E-5  -> 0E+4
dddiv336 divide 0E-1    7E-1  -> 0
dddiv337 divide 0E-1    7E+1  -> 0.00
dddiv338 divide 0E-1    7E+5  -> 0.000000
dddiv339 divide 0E+1    7E-5  -> 0E+6
dddiv340 divide 0E+1    7E-1  -> 0E+2
dddiv341 divide 0E+1    7E+1  -> 0
dddiv342 divide 0E+1    7E+5  -> 0.0000
dddiv343 divide 0E+3    7E-5  -> 0E+8
dddiv344 divide 0E+3    7E-1  -> 0E+4
dddiv345 divide 0E+3    7E+1  -> 0E+2
dddiv346 divide 0E+3    7E+5  -> 0.00

-- These were 'input rounding'
dddiv441 divide 12345678000 1 -> 12345678000
dddiv442 divide 1 12345678000 -> 8.100000664200054E-11 Inexact Rounded
dddiv443 divide 1234567800  1 -> 1234567800
dddiv444 divide 1 1234567800  -> 8.100000664200054E-10 Inexact Rounded
dddiv445 divide 1234567890  1 -> 1234567890
dddiv446 divide 1 1234567890  -> 8.100000073710001E-10 Inexact Rounded
dddiv447 divide 1234567891  1 -> 1234567891
dddiv448 divide 1 1234567891  -> 8.100000067149001E-10 Inexact Rounded
dddiv449 divide 12345678901 1 -> 12345678901
dddiv450 divide 1 12345678901 -> 8.100000073053901E-11 Inexact Rounded
dddiv451 divide 1234567896  1 -> 1234567896
dddiv452 divide 1 1234567896  -> 8.100000034344000E-10 Inexact Rounded

-- high-lows
dddiv453 divide 1e+1   1    ->   1E+1
dddiv454 divide 1e+1   1.0  ->   1E+1
dddiv455 divide 1e+1   1.00 ->   1E+1
dddiv456 divide 1e+2   2    ->   5E+1
dddiv457 divide 1e+2   2.0  ->   5E+1
dddiv458 divide 1e+2   2.00 ->   5E+1

-- some from IEEE discussions
dddiv460 divide 3e0      2e0     -> 1.5
dddiv461 divide 30e-1    2e0     -> 1.5
dddiv462 divide 300e-2   2e0     -> 1.50
dddiv464 divide 3000e-3  2e0     -> 1.500
dddiv465 divide 3e0      20e-1   -> 1.5
dddiv466 divide 30e-1    20e-1   -> 1.5
dddiv467 divide 300e-2   20e-1   -> 1.5
dddiv468 divide 3000e-3  20e-1   -> 1.50
dddiv469 divide 3e0      200e-2  -> 1.5
dddiv470 divide 30e-1    200e-2  -> 1.5
dddiv471 divide 300e-2   200e-2  -> 1.5
dddiv472 divide 3000e-3  200e-2  -> 1.5
dddiv473 divide 3e0      2000e-3 -> 1.5
dddiv474 divide 30e-1    2000e-3 -> 1.5
dddiv475 divide 300e-2   2000e-3 -> 1.5
dddiv476 divide 3000e-3  2000e-3 -> 1.5

-- some reciprocals
dddiv480 divide 1        1.0E+33 -> 1E-33
dddiv481 divide 1        10E+33  -> 1E-34
dddiv482 divide 1        1.0E-33 -> 1E+33
dddiv483 divide 1        10E-33  -> 1E+32

-- RMS discussion table
dddiv484 divide 0e5     1e3 ->   0E+2
dddiv485 divide 0e5     2e3 ->   0E+2
dddiv486 divide 0e5    10e2 ->   0E+3
dddiv487 divide 0e5    20e2 ->   0E+3
dddiv488 divide 0e5   100e1 ->   0E+4
dddiv489 divide 0e5   200e1 ->   0E+4

dddiv491 divide 1e5     1e3 ->   1E+2
dddiv492 divide 1e5     2e3 ->   5E+1
dddiv493 divide 1e5    10e2 ->   1E+2
dddiv494 divide 1e5    20e2 ->   5E+1
dddiv495 divide 1e5   100e1 ->   1E+2
dddiv496 divide 1e5   200e1 ->   5E+1

-- tryzeros cases
rounding:    half_up
dddiv497  divide  0E+380 1000E-13  -> 0E+369 Clamped
dddiv498  divide  0E-390 1000E+13  -> 0E-398 Clamped

rounding:    half_up

-- focus on trailing zeros issues
dddiv500 divide  1      9.9    ->  0.1010101010101010  Inexact Rounded
dddiv501 divide  1      9.09   ->  0.1100110011001100  Inexact Rounded
dddiv502 divide  1      9.009  ->  0.1110001110001110  Inexact Rounded

dddiv511 divide 1         2    -> 0.5
dddiv512 divide 1.0       2    -> 0.5
dddiv513 divide 1.00      2    -> 0.50
dddiv514 divide 1.000     2    -> 0.500
dddiv515 divide 1.0000    2    -> 0.5000
dddiv516 divide 1.00000   2    -> 0.50000
dddiv517 divide 1.000000  2    -> 0.500000
dddiv518 divide 1.0000000 2    -> 0.5000000
dddiv519 divide 1.00      2.00 -> 0.5

dddiv521 divide 2    1         -> 2
dddiv522 divide 2    1.0       -> 2
dddiv523 divide 2    1.00      -> 2
dddiv524 divide 2    1.000     -> 2
dddiv525 divide 2    1.0000    -> 2
dddiv526 divide 2    1.00000   -> 2
dddiv527 divide 2    1.000000  -> 2
dddiv528 divide 2    1.0000000 -> 2
dddiv529 divide 2.00 1.00      -> 2

dddiv530 divide  2.40   2      ->  1.20
dddiv531 divide  2.40   4      ->  0.60
dddiv532 divide  2.40  10      ->  0.24
dddiv533 divide  2.40   2.0    ->  1.2
dddiv534 divide  2.40   4.0    ->  0.6
dddiv535 divide  2.40  10.0    ->  0.24
dddiv536 divide  2.40   2.00   ->  1.2
dddiv537 divide  2.40   4.00   ->  0.6
dddiv538 divide  2.40  10.00   ->  0.24
dddiv539 divide  0.9    0.1    ->  9
dddiv540 divide  0.9    0.01   ->  9E+1
dddiv541 divide  0.9    0.001  ->  9E+2
dddiv542 divide  5      2      ->  2.5
dddiv543 divide  5      2.0    ->  2.5
dddiv544 divide  5      2.00   ->  2.5
dddiv545 divide  5      20     ->  0.25
dddiv546 divide  5      20.0   ->  0.25
dddiv547 divide  2.400  2      ->  1.200
dddiv548 divide  2.400  2.0    ->  1.20
dddiv549 divide  2.400  2.400  ->  1

dddiv550 divide  240    1      ->  240
dddiv551 divide  240    10     ->  24
dddiv552 divide  240    100    ->  2.4
dddiv553 divide  240    1000   ->  0.24
dddiv554 divide  2400   1      ->  2400
dddiv555 divide  2400   10     ->  240
dddiv556 divide  2400   100    ->  24
dddiv557 divide  2400   1000   ->  2.4

-- +ve exponent
dddiv600 divide  2.4E+9     2  ->  1.2E+9
dddiv601 divide  2.40E+9    2  ->  1.20E+9
dddiv602 divide  2.400E+9   2  ->  1.200E+9
dddiv603 divide  2.4000E+9  2  ->  1.2000E+9
dddiv604 divide  24E+8      2  ->  1.2E+9
dddiv605 divide  240E+7     2  ->  1.20E+9
dddiv606 divide  2400E+6    2  ->  1.200E+9
dddiv607 divide  24000E+5   2  ->  1.2000E+9

-- more zeros, etc.
dddiv731 divide 5.00 1E-3    -> 5.00E+3
dddiv732 divide 00.00 0.000  -> NaN Division_undefined
dddiv733 divide 00.00 0E-3   -> NaN Division_undefined
dddiv734 divide  0    -0     -> NaN Division_undefined
dddiv735 divide -0     0     -> NaN Division_undefined
dddiv736 divide -0    -0     -> NaN Division_undefined

dddiv741 divide  0    -1     -> -0
dddiv742 divide -0    -1     ->  0
dddiv743 divide  0     1     ->  0
dddiv744 divide -0     1     -> -0
dddiv745 divide -1     0     -> -Infinity Division_by_zero
dddiv746 divide -1    -0     ->  Infinity Division_by_zero
dddiv747 divide  1     0     ->  Infinity Division_by_zero
dddiv748 divide  1    -0     -> -Infinity Division_by_zero

dddiv751 divide  0.0  -1     -> -0.0
dddiv752 divide -0.0  -1     ->  0.0
dddiv753 divide  0.0   1     ->  0.0
dddiv754 divide -0.0   1     -> -0.0
dddiv755 divide -1.0   0     -> -Infinity Division_by_zero
dddiv756 divide -1.0  -0     ->  Infinity Division_by_zero
dddiv757 divide  1.0   0     ->  Infinity Division_by_zero
dddiv758 divide  1.0  -0     -> -Infinity Division_by_zero

dddiv761 divide  0    -1.0   -> -0E+1
dddiv762 divide -0    -1.0   ->  0E+1
dddiv763 divide  0     1.0   ->  0E+1
dddiv764 divide -0     1.0   -> -0E+1
dddiv765 divide -1     0.0   -> -Infinity Division_by_zero
dddiv766 divide -1    -0.0   ->  Infinity Division_by_zero
dddiv767 divide  1     0.0   ->  Infinity Division_by_zero
dddiv768 divide  1    -0.0   -> -Infinity Division_by_zero

dddiv771 divide  0.0  -1.0   -> -0
dddiv772 divide -0.0  -1.0   ->  0
dddiv773 divide  0.0   1.0   ->  0
dddiv774 divide -0.0   1.0   -> -0
dddiv775 divide -1.0   0.0   -> -Infinity Division_by_zero
dddiv776 divide -1.0  -0.0   ->  Infinity Division_by_zero
dddiv777 divide  1.0   0.0   ->  Infinity Division_by_zero
dddiv778 divide  1.0  -0.0   -> -Infinity Division_by_zero

-- Specials
dddiv780 divide  Inf  -Inf   ->  NaN Invalid_operation
dddiv781 divide  Inf  -1000  -> -Infinity
dddiv782 divide  Inf  -1     -> -Infinity
dddiv783 divide  Inf  -0     -> -Infinity
dddiv784 divide  Inf   0     ->  Infinity
dddiv785 divide  Inf   1     ->  Infinity
dddiv786 divide  Inf   1000  ->  Infinity
dddiv787 divide  Inf   Inf   ->  NaN Invalid_operation
dddiv788 divide -1000  Inf   -> -0E-398 Clamped
dddiv789 divide -Inf   Inf   ->  NaN Invalid_operation
dddiv790 divide -1     Inf   -> -0E-398 Clamped
dddiv791 divide -0     Inf   -> -0E-398 Clamped
dddiv792 divide  0     Inf   ->  0E-398 Clamped
dddiv793 divide  1     Inf   ->  0E-398 Clamped
dddiv794 divide  1000  Inf   ->  0E-398 Clamped
dddiv795 divide  Inf   Inf   ->  NaN Invalid_operation

dddiv800 divide -Inf  -Inf   ->  NaN Invalid_operation
dddiv801 divide -Inf  -1000  ->  Infinity
dddiv802 divide -Inf  -1     ->  Infinity
dddiv803 divide -Inf  -0     ->  Infinity
dddiv804 divide -Inf   0     -> -Infinity
dddiv805 divide -Inf   1     -> -Infinity
dddiv806 divide -Inf   1000  -> -Infinity
dddiv807 divide -Inf   Inf   ->  NaN Invalid_operation
dddiv808 divide -1000  Inf   -> -0E-398 Clamped
dddiv809 divide -Inf  -Inf   ->  NaN Invalid_operation
dddiv810 divide -1    -Inf   ->  0E-398 Clamped
dddiv811 divide -0    -Inf   ->  0E-398 Clamped
dddiv812 divide  0    -Inf   -> -0E-398 Clamped
dddiv813 divide  1    -Inf   -> -0E-398 Clamped
dddiv814 divide  1000 -Inf   -> -0E-398 Clamped
dddiv815 divide  Inf  -Inf   ->  NaN Invalid_operation

dddiv821 divide  NaN -Inf    ->  NaN
dddiv822 divide  NaN -1000   ->  NaN
dddiv823 divide  NaN -1      ->  NaN
dddiv824 divide  NaN -0      ->  NaN
dddiv825 divide  NaN  0      ->  NaN
dddiv826 divide  NaN  1      ->  NaN
dddiv827 divide  NaN  1000   ->  NaN
dddiv828 divide  NaN  Inf    ->  NaN
dddiv829 divide  NaN  NaN    ->  NaN
dddiv830 divide -Inf  NaN    ->  NaN
dddiv831 divide -1000 NaN    ->  NaN
dddiv832 divide -1    NaN    ->  NaN
dddiv833 divide -0    NaN    ->  NaN
dddiv834 divide  0    NaN    ->  NaN
dddiv835 divide  1    NaN    ->  NaN
dddiv836 divide  1000 NaN    ->  NaN
dddiv837 divide  Inf  NaN    ->  NaN

dddiv841 divide  sNaN -Inf   ->  NaN  Invalid_operation
dddiv842 divide  sNaN -1000  ->  NaN  Invalid_operation
dddiv843 divide  sNaN -1     ->  NaN  Invalid_operation
dddiv844 divide  sNaN -0     ->  NaN  Invalid_operation
dddiv845 divide  sNaN  0     ->  NaN  Invalid_operation
dddiv846 divide  sNaN  1     ->  NaN  Invalid_operation
dddiv847 divide  sNaN  1000  ->  NaN  Invalid_operation
dddiv848 divide  sNaN  NaN   ->  NaN  Invalid_operation
dddiv849 divide  sNaN sNaN   ->  NaN  Invalid_operation
dddiv850 divide  NaN  sNaN   ->  NaN  Invalid_operation
dddiv851 divide -Inf  sNaN   ->  NaN  Invalid_operation
dddiv852 divide -1000 sNaN   ->  NaN  Invalid_operation
dddiv853 divide -1    sNaN   ->  NaN  Invalid_operation
dddiv854 divide -0    sNaN   ->  NaN  Invalid_operation
dddiv855 divide  0    sNaN   ->  NaN  Invalid_operation
dddiv856 divide  1    sNaN   ->  NaN  Invalid_operation
dddiv857 divide  1000 sNaN   ->  NaN  Invalid_operation
dddiv858 divide  Inf  sNaN   ->  NaN  Invalid_operation
dddiv859 divide  NaN  sNaN   ->  NaN  Invalid_operation

-- propagating NaNs
dddiv861 divide  NaN9 -Inf   ->  NaN9
dddiv862 divide  NaN8  1000  ->  NaN8
dddiv863 divide  NaN7  Inf   ->  NaN7
dddiv864 divide  NaN6  NaN5  ->  NaN6
dddiv865 divide -Inf   NaN4  ->  NaN4
dddiv866 divide -1000  NaN3  ->  NaN3
dddiv867 divide  Inf   NaN2  ->  NaN2

dddiv871 divide  sNaN99 -Inf    ->  NaN99 Invalid_operation
dddiv872 divide  sNaN98 -1      ->  NaN98 Invalid_operation
dddiv873 divide  sNaN97  NaN    ->  NaN97 Invalid_operation
dddiv874 divide  sNaN96 sNaN94  ->  NaN96 Invalid_operation
dddiv875 divide  NaN95  sNaN93  ->  NaN93 Invalid_operation
dddiv876 divide -Inf    sNaN92  ->  NaN92 Invalid_operation
dddiv877 divide  0      sNaN91  ->  NaN91 Invalid_operation
dddiv878 divide  Inf    sNaN90  ->  NaN90 Invalid_operation
dddiv879 divide  NaN    sNaN89  ->  NaN89 Invalid_operation

dddiv881 divide  -NaN9  -Inf   ->  -NaN9
dddiv882 divide  -NaN8   1000  ->  -NaN8
dddiv883 divide  -NaN7   Inf   ->  -NaN7
dddiv884 divide  -NaN6  -NaN5  ->  -NaN6
dddiv885 divide  -Inf   -NaN4  ->  -NaN4
dddiv886 divide  -1000  -NaN3  ->  -NaN3
dddiv887 divide   Inf   -NaN2  ->  -NaN2

dddiv891 divide -sNaN99 -Inf    -> -NaN99 Invalid_operation
dddiv892 divide -sNaN98 -1      -> -NaN98 Invalid_operation
dddiv893 divide -sNaN97  NaN    -> -NaN97 Invalid_operation
dddiv894 divide -sNaN96 -sNaN94 -> -NaN96 Invalid_operation
dddiv895 divide -NaN95  -sNaN93 -> -NaN93 Invalid_operation
dddiv896 divide -Inf    -sNaN92 -> -NaN92 Invalid_operation
dddiv897 divide  0      -sNaN91 -> -NaN91 Invalid_operation
dddiv898 divide  Inf    -sNaN90 -> -NaN90 Invalid_operation
dddiv899 divide -NaN    -sNaN89 -> -NaN89 Invalid_operation

-- Various flavours of divide by 0
dddiv901 divide    0       0   ->  NaN Division_undefined
dddiv902 divide    0.0E5   0   ->  NaN Division_undefined
dddiv903 divide    0.000   0   ->  NaN Division_undefined
dddiv904 divide    0.0001  0   ->  Infinity Division_by_zero
dddiv905 divide    0.01    0   ->  Infinity Division_by_zero
dddiv906 divide    0.1     0   ->  Infinity Division_by_zero
dddiv907 divide    1       0   ->  Infinity Division_by_zero
dddiv908 divide    1       0.0 ->  Infinity Division_by_zero
dddiv909 divide   10       0.0 ->  Infinity Division_by_zero
dddiv910 divide   1E+100   0.0 ->  Infinity Division_by_zero
dddiv911 divide   1E+100   0   ->  Infinity Division_by_zero

dddiv921 divide   -0.0001  0   -> -Infinity Division_by_zero
dddiv922 divide   -0.01    0   -> -Infinity Division_by_zero
dddiv923 divide   -0.1     0   -> -Infinity Division_by_zero
dddiv924 divide   -1       0   -> -Infinity Division_by_zero
dddiv925 divide   -1       0.0 -> -Infinity Division_by_zero
dddiv926 divide  -10       0.0 -> -Infinity Division_by_zero
dddiv927 divide  -1E+100   0.0 -> -Infinity Division_by_zero
dddiv928 divide  -1E+100   0   -> -Infinity Division_by_zero

dddiv931 divide    0.0001 -0   -> -Infinity Division_by_zero
dddiv932 divide    0.01   -0   -> -Infinity Division_by_zero
dddiv933 divide    0.1    -0   -> -Infinity Division_by_zero
dddiv934 divide    1      -0   -> -Infinity Division_by_zero
dddiv935 divide    1      -0.0 -> -Infinity Division_by_zero
dddiv936 divide   10      -0.0 -> -Infinity Division_by_zero
dddiv937 divide   1E+100  -0.0 -> -Infinity Division_by_zero
dddiv938 divide   1E+100  -0   -> -Infinity Division_by_zero

dddiv941 divide   -0.0001 -0   ->  Infinity Division_by_zero
dddiv942 divide   -0.01   -0   ->  Infinity Division_by_zero
dddiv943 divide   -0.1    -0   ->  Infinity Division_by_zero
dddiv944 divide   -1      -0   ->  Infinity Division_by_zero
dddiv945 divide   -1      -0.0 ->  Infinity Division_by_zero
dddiv946 divide  -10      -0.0 ->  Infinity Division_by_zero
dddiv947 divide  -1E+100  -0.0 ->  Infinity Division_by_zero
dddiv948 divide  -1E+100  -0   ->  Infinity Division_by_zero

-- Examples from SQL proposal (Krishna Kulkarni)
dddiv1021  divide 1E0          1E0 -> 1
dddiv1022  divide 1E0          2E0 -> 0.5
dddiv1023  divide 1E0          3E0 -> 0.3333333333333333 Inexact Rounded
dddiv1024  divide 100E-2   1000E-3 -> 1
dddiv1025  divide 24E-1        2E0 -> 1.2
dddiv1026  divide 2400E-3      2E0 -> 1.200
dddiv1027  divide 5E0          2E0 -> 2.5
dddiv1028  divide 5E0        20E-1 -> 2.5
dddiv1029  divide 5E0      2000E-3 -> 2.5
dddiv1030  divide 5E0         2E-1 -> 25
dddiv1031  divide 5E0        20E-2 -> 25
dddiv1032  divide 480E-2       3E0 -> 1.60
dddiv1033  divide 47E-1        2E0 -> 2.35

-- ECMAScript bad examples
rounding:    half_down
dddiv1040  divide 5 9  -> 0.5555555555555556 Inexact Rounded
rounding:    half_even
dddiv1041  divide 6 11 -> 0.5454545454545455 Inexact Rounded

-- overflow and underflow tests .. note subnormal results
-- signs
dddiv1051 divide  1e+277  1e-311 ->  Infinity Overflow Inexact Rounded
dddiv1052 divide  1e+277 -1e-311 -> -Infinity Overflow Inexact Rounded
dddiv1053 divide -1e+277  1e-311 -> -Infinity Overflow Inexact Rounded
dddiv1054 divide -1e+277 -1e-311 ->  Infinity Overflow Inexact Rounded
dddiv1055 divide  1e-277  1e+311 ->  0E-398 Underflow Subnormal Inexact Rounded Clamped
dddiv1056 divide  1e-277 -1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
dddiv1057 divide -1e-277  1e+311 -> -0E-398 Underflow Subnormal Inexact Rounded Clamped
dddiv1058 divide -1e-277 -1e+311 ->  0E-398 Underflow Subnormal Inexact Rounded Clamped

-- 'subnormal' boundary (all hard underflow or overflow in base arithmetic)
dddiv1060 divide 1e-291 1e+101 -> 1E-392 Subnormal
dddiv1061 divide 1e-291 1e+102 -> 1E-393 Subnormal
dddiv1062 divide 1e-291 1e+103 -> 1E-394 Subnormal
dddiv1063 divide 1e-291 1e+104 -> 1E-395 Subnormal
dddiv1064 divide 1e-291 1e+105 -> 1E-396 Subnormal
dddiv1065 divide 1e-291 1e+106 -> 1E-397 Subnormal
dddiv1066 divide 1e-291 1e+107 -> 1E-398 Subnormal
dddiv1067 divide 1e-291 1e+108 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
dddiv1068 divide 1e-291 1e+109 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
dddiv1069 divide 1e-291 1e+110 -> 0E-398 Underflow Subnormal Inexact Rounded Clamped
-- [no equivalent of 'subnormal' for overflow]
dddiv1070 divide 1e+60 1e-321 -> 1.000000000000E+381  Clamped
dddiv1071 divide 1e+60 1e-322 -> 1.0000000000000E+382  Clamped
dddiv1072 divide 1e+60 1e-323 -> 1.00000000000000E+383  Clamped
dddiv1073 divide 1e+60 1e-324 -> 1.000000000000000E+384  Clamped
dddiv1074 divide 1e+60 1e-325 -> Infinity Overflow Inexact Rounded
dddiv1075 divide 1e+60 1e-326 -> Infinity Overflow Inexact Rounded
dddiv1076 divide 1e+60 1e-327 -> Infinity Overflow Inexact Rounded
dddiv1077 divide 1e+60 1e-328 -> Infinity Overflow Inexact Rounded
dddiv1078 divide 1e+60 1e-329 -> Infinity Overflow Inexact Rounded
dddiv1079 divide 1e+60 1e-330 -> Infinity Overflow Inexact Rounded

dddiv1101 divide  1.0000E-394  1     -> 1.0000E-394 Subnormal
dddiv1102 divide  1.000E-394   1e+1  -> 1.000E-395  Subnormal
dddiv1103 divide  1.00E-394    1e+2  -> 1.00E-396   Subnormal
dddiv1104 divide  1.0E-394     1e+3  -> 1.0E-397    Subnormal
dddiv1105 divide  1.0E-394     1e+4  -> 1E-398     Subnormal Rounded
dddiv1106 divide  1.3E-394     1e+4  -> 1E-398     Underflow Subnormal Inexact Rounded
dddiv1107 divide  1.5E-394     1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1108 divide  1.7E-394     1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1109 divide  2.3E-394     1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1110 divide  2.5E-394     1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1111 divide  2.7E-394     1e+4  -> 3E-398     Underflow Subnormal Inexact Rounded
dddiv1112 divide  1.49E-394    1e+4  -> 1E-398     Underflow Subnormal Inexact Rounded
dddiv1113 divide  1.50E-394    1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1114 divide  1.51E-394    1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1115 divide  2.49E-394    1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1116 divide  2.50E-394    1e+4  -> 2E-398     Underflow Subnormal Inexact Rounded
dddiv1117 divide  2.51E-394    1e+4  -> 3E-398     Underflow Subnormal Inexact Rounded

dddiv1118 divide  1E-394       1e+4  -> 1E-398     Subnormal
dddiv1119 divide  3E-394       1e+5  -> 0E-398     Underflow Subnormal Inexact Rounded Clamped
dddiv1120 divide  5E-394       1e+5  -> 0E-398     Underflow Subnormal Inexact Rounded Clamped
dddiv1121 divide  7E-394       1e+5  -> 1E-398     Underflow Subnormal Inexact Rounded
dddiv1122 divide  9E-394       1e+5  -> 1E-398     Underflow Subnormal Inexact Rounded
dddiv1123 divide  9.9E-394     1e+5  -> 1E-398     Underflow Subnormal Inexact Rounded

dddiv1124 divide  1E-394      -1e+4  -> -1E-398    Subnormal
dddiv1125 divide  3E-394      -1e+5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped
dddiv1126 divide -5E-394       1e+5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped
dddiv1127 divide  7E-394      -1e+5  -> -1E-398    Underflow Subnormal Inexact Rounded
dddiv1128 divide -9E-394       1e+5  -> -1E-398    Underflow Subnormal Inexact Rounded
dddiv1129 divide  9.9E-394    -1e+5  -> -1E-398    Underflow Subnormal Inexact Rounded
dddiv1130 divide  3.0E-394    -1e+5  -> -0E-398    Underflow Subnormal Inexact Rounded Clamped

dddiv1131 divide  1.0E-199     1e+200 -> 0E-398    Underflow Subnormal Inexact Rounded Clamped
dddiv1132 divide  1.0E-199     1e+199 -> 1E-398    Subnormal Rounded
dddiv1133 divide  1.0E-199     1e+198 -> 1.0E-397  Subnormal
dddiv1134 divide  2.0E-199     2e+198 -> 1.0E-397  Subnormal
dddiv1135 divide  4.0E-199     4e+198 -> 1.0E-397  Subnormal
dddiv1136 divide 10.0E-199    10e+198 -> 1.0E-397  Subnormal
dddiv1137 divide 30.0E-199    30e+198 -> 1.0E-397  Subnormal

-- randoms
dddiv2010  divide  -3.303226714900711E-35   8.796578842713183E+73   ->  -3.755126594058783E-109 Inexact Rounded
dddiv2011  divide   933153327821073.6       68782181090246.25       ->   13.56678885475763 Inexact Rounded
dddiv2012  divide   5.04752436057906E-72   -8.179481771238642E+64   ->  -6.170958627632835E-137 Inexact Rounded
dddiv2013  divide  -3707613309582318        3394911196503.048       ->  -1092.109070010836 Inexact Rounded
dddiv2014  divide   99689.0555190461       -4.735208553891464       ->  -21052.72753765411 Inexact Rounded
dddiv2015  divide  -1447915775613329        269750797.8184875       ->  -5367605.164925653 Inexact Rounded
dddiv2016  divide  -9.394881304225258E-19  -830585.0252671636       ->   1.131116143251358E-24 Inexact Rounded
dddiv2017  divide  -1.056283432738934       88.58754555124013       ->  -0.01192361100159352 Inexact Rounded
dddiv2018  divide   5763220933343.081       689089567025052.1       ->   0.008363529516524456 Inexact Rounded
dddiv2019  divide   873819.122103216        9.740612494523300E-49   ->   8.970884763093948E+53 Inexact Rounded
dddiv2020  divide   8022914.838533576       6178.566801742713       ->   1298.507420243583 Inexact Rounded
dddiv2021  divide   203982.7605650363      -2158.283639053435       ->  -94.51156320422168 Inexact Rounded
dddiv2022  divide   803.6310547013030       7101143795399.238       ->   1.131692411611166E-10 Inexact Rounded
dddiv2023  divide   9.251697842123399E-82  -1.342350220606119E-7    ->  -6.892163982321936E-75 Inexact Rounded
dddiv2024  divide  -1.980600645637992E-53  -5.474262753214457E+77   ->   3.618022617703168E-131 Inexact Rounded
dddiv2025  divide  -210.0322996351690      -8.580951835872843E+80   ->   2.447657365434971E-79 Inexact Rounded
dddiv2026  divide  -1.821980314020370E+85  -3.018915267138165       ->   6.035215144503042E+84 Inexact Rounded
dddiv2027  divide  -772264503601.1047       5.158258271408988E-86   ->  -1.497141986630614E+97 Inexact Rounded
dddiv2028  divide  -767.0532415847106       2.700027228028939E-59   ->  -2.840909282772941E+61 Inexact Rounded
dddiv2029  divide   496724.8548250093       7.32700588163100E+66    ->   6.779370220929013E-62 Inexact Rounded
dddiv2030  divide  -304232651447703.9      -108.9730808657440       ->   2791814721862.565 Inexact Rounded
dddiv2031  divide  -7.233817192699405E+42  -5711302004.149411       ->   1.266579352211430E+33 Inexact Rounded
dddiv2032  divide  -9.999221444912745E+96   4010569406446197        ->  -2.493217404202250E+81 Inexact Rounded
dddiv2033  divide  -1837272.061937622       8.356322838066762       ->  -219866.0939196882 Inexact Rounded
dddiv2034  divide   2168.517555606529       209.1910258615061       ->   10.36620737756784 Inexact Rounded
dddiv2035  divide  -1.884389790576371E+88   2.95181953870583E+20    ->  -6.383824505079828E+67 Inexact Rounded
dddiv2036  divide   732263.6037438196       961222.3634446889       ->   0.7618045850698269 Inexact Rounded
dddiv2037  divide  -813461419.0348336       5.376293753809143E+84   ->  -1.513052404285927E-76 Inexact Rounded
dddiv2038  divide  -45562133508108.50      -9.776843494690107E+51   ->   4.660208945029519E-39 Inexact Rounded
dddiv2039  divide  -6.489393172441016E+80  -9101965.097852113       ->   7.129661674897421E+73 Inexact Rounded
dddiv2040  divide   3.694576237117349E+93   6683512.012622003       ->   5.527896456443912E+86 Inexact Rounded
dddiv2041  divide  -2.252877726403272E+19  -7451913256.181367       ->   3023220546.125531 Inexact Rounded
dddiv2042  divide   518303.1989111842       50.01587020474133       ->   10362.77479107123 Inexact Rounded
dddiv2043  divide   2.902087881880103E+24   33.32400992305702       ->   8.708699488989578E+22 Inexact Rounded
dddiv2044  divide   549619.4559510557       1660824845196338        ->   3.309316196351104E-10 Inexact Rounded
dddiv2045  divide  -6775670774684043        8292152023.077262       ->  -817118.4941891062 Inexact Rounded
dddiv2046  divide  -77.50923921524079      -5.636882655425815E+74   ->   1.375037302588405E-73 Inexact Rounded
dddiv2047  divide  -2.984889459605149E-10  -88106156784122.99       ->   3.387833005721384E-24 Inexact Rounded
dddiv2048  divide   0.949517293997085       44767115.96450998       ->   2.121015110175589E-8 Inexact Rounded
dddiv2049  divide  -2760937211.084521      -1087015876975408        ->   0.000002539923537057024 Inexact Rounded
dddiv2050  divide   28438351.85030536      -4.209397904088624E-47   ->  -6.755919135770688E+53 Inexact Rounded
dddiv2051  divide  -85562731.6820956       -7.166045442530185E+45   ->   1.194002080621542E-38 Inexact Rounded
dddiv2052  divide   2533802852165.25        7154.119606235955       ->   354173957.3317501 Inexact Rounded
dddiv2053  divide  -8858831346851.474       97.59734208801716       ->  -90769186509.83577 Inexact Rounded
dddiv2054  divide   176783629801387.5       840073263.3109817       ->   210438.3480848206 Inexact Rounded
dddiv2055  divide  -493506471796175.6       79733894790822.03       ->  -6.189418854940746 Inexact Rounded
dddiv2056  divide   790.1682542103445       829.9449370367435       ->   0.9520731062371214 Inexact Rounded
dddiv2057  divide  -8920459838.583164      -4767.889187899214       ->   1870945.294035581 Inexact Rounded
dddiv2058  divide   53536687164422.1        53137.5007032689        ->   1007512330.385698 Inexact Rounded
dddiv2059  divide   4.051532311146561E-74  -2.343089768972261E+94   ->  -1.729140882606332E-168 Inexact Rounded
dddiv2060  divide  -14847758778636.88       3.062543516383807E-43   ->  -4.848178874587497E+55 Inexact Rounded

-- Division probably has pre-rounding, so need to test rounding
-- explicitly rather than assume included through other tests;
-- tests include simple rounding and also the tricky cases of sticky
-- bits following two zeros
--
--   1/99999 gives 0.0000100001000010000100001000010000100001
--                       1234567890123456
--
--   1/999999 gives 0.000001000001000001000001000001000001000001
--                         1234567890123456

rounding: ceiling
dddiv3001  divide  1     3    ->  0.3333333333333334 Inexact Rounded
dddiv3002  divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv3003  divide  1 99999    ->  0.00001000010000100002  Inexact Rounded
dddiv3004  divide  1 999999   ->  0.000001000001000001001 Inexact Rounded

rounding: floor
dddiv3011  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3012  divide  2     3    ->  0.6666666666666666 Inexact Rounded
dddiv3013  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3014  divide  1 999999   ->  0.000001000001000001000 Inexact Rounded

rounding: up
dddiv3021  divide  1     3    ->  0.3333333333333334 Inexact Rounded
dddiv3022  divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv3023  divide  1 99999    ->  0.00001000010000100002  Inexact Rounded
dddiv3024  divide  1 999999   ->  0.000001000001000001001 Inexact Rounded

rounding: down
dddiv3031  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3032  divide  2     3    ->  0.6666666666666666 Inexact Rounded
dddiv3033  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3034  divide  1 999999   ->  0.000001000001000001000 Inexact Rounded

rounding: half_up
dddiv3041  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3042  divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv3043  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3044  divide  1 999999   ->  0.000001000001000001000 Inexact Rounded

rounding: half_down
dddiv3051  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3052  divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv3053  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3054  divide  1 999999   ->  0.000001000001000001000 Inexact Rounded

rounding: half_even
dddiv3061  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3062  divide  2     3    ->  0.6666666666666667 Inexact Rounded
dddiv3063  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3064  divide  1 999999   ->  0.000001000001000001000 Inexact Rounded

rounding: 05up
dddiv3071  divide  1     3    ->  0.3333333333333333 Inexact Rounded
dddiv3072  divide  2     3    ->  0.6666666666666666 Inexact Rounded
dddiv3073  divide  1 99999    ->  0.00001000010000100001  Inexact Rounded
dddiv3074  divide  1 999999   ->  0.000001000001000001001 Inexact Rounded

-- random divide tests with result near 1
rounding: half_even
dddiv4001 divide  3195385192916917   3195385192946695  ->  0.9999999999906809  Inexact Rounded
dddiv4002 divide  1393723067526993   1393723067519475  ->  1.000000000005394  Inexact Rounded
dddiv4003 divide   759985543702302    759985543674015  ->  1.000000000037220  Inexact Rounded
dddiv4004 divide  9579158456027302   9579158456036864  ->  0.9999999999990018  Inexact Rounded
dddiv4005 divide  7079398299143569   7079398299156904  ->  0.9999999999981164  Inexact Rounded
dddiv4006 divide  6636169255366598   6636169255336386  ->  1.000000000004553  Inexact Rounded
dddiv4007 divide  6964813971340090   6964813971321554  ->  1.000000000002661  Inexact Rounded
dddiv4008 divide  4182275225480784   4182275225454009  ->  1.000000000006402  Inexact Rounded
dddiv4009 divide  9228325124938029   9228325124918730  ->  1.000000000002091  Inexact Rounded
dddiv4010 divide  3428346338630192   3428346338609843  ->  1.000000000005936  Inexact Rounded
dddiv4011 divide  2143511550722893   2143511550751754  ->  0.9999999999865356  Inexact Rounded
dddiv4012 divide  1672732924396785   1672732924401811  ->  0.9999999999969953  Inexact Rounded
dddiv4013 divide  4190714611948216   4190714611948664  ->  0.9999999999998931  Inexact Rounded
dddiv4014 divide  3942254800848877   3942254800814556  ->  1.000000000008706  Inexact Rounded
dddiv4015 divide  2854459826952334   2854459826960762  ->  0.9999999999970474  Inexact Rounded
dddiv4016 divide  2853258953664731   2853258953684471  ->  0.9999999999930816  Inexact Rounded
dddiv4017 divide  9453512638125978   9453512638146425  ->  0.9999999999978371  Inexact Rounded
dddiv4018 divide   339476633940369    339476633912887  ->  1.000000000080954  Inexact Rounded
dddiv4019 divide  4542181492688467   4542181492697735  ->  0.9999999999979596  Inexact Rounded
dddiv4020 divide  7312600192399197   7312600192395424  ->  1.000000000000516  Inexact Rounded
dddiv4021 divide  1811674985570111   1811674985603935  ->  0.9999999999813300  Inexact Rounded
dddiv4022 divide  1706462639003481   1706462639017740  ->  0.9999999999916441  Inexact Rounded
dddiv4023 divide  6697052654940368   6697052654934110  ->  1.000000000000934  Inexact Rounded
dddiv4024 divide  5015283664277539   5015283664310719  ->  0.9999999999933842  Inexact Rounded
dddiv4025 divide  2359501561537464   2359501561502464  ->  1.000000000014834  Inexact Rounded
dddiv4026 divide  2669850227909157   2669850227901548  ->  1.000000000002850  Inexact Rounded
dddiv4027 divide  9329725546974648   9329725547002445  ->  0.9999999999970206  Inexact Rounded
dddiv4028 divide  3228562867071248   3228562867106206  ->  0.9999999999891723  Inexact Rounded
dddiv4029 divide  4862226644921175   4862226644909380  ->  1.000000000002426  Inexact Rounded
dddiv4030 divide  1022267997054529   1022267997071329  ->  0.9999999999835660  Inexact Rounded
dddiv4031 divide  1048777482023719   1048777482000948  ->  1.000000000021712  Inexact Rounded
dddiv4032 divide  9980113777337098   9980113777330539  ->  1.000000000000657  Inexact Rounded
dddiv4033 divide  7506839167963908   7506839167942901  ->  1.000000000002798  Inexact Rounded
dddiv4034 divide   231119751977860    231119751962453  ->  1.000000000066662  Inexact Rounded
dddiv4035 divide  4034903664762962   4034903664795526  ->  0.9999999999919294  Inexact Rounded
dddiv4036 divide  5700122152274696   5700122152251386  ->  1.000000000004089  Inexact Rounded
dddiv4037 divide  6869599590293110   6869599590293495  ->  0.9999999999999440  Inexact Rounded
dddiv4038 divide  5576281960092797   5576281960105579  ->  0.9999999999977078  Inexact Rounded
dddiv4039 divide  2304844888381318   2304844888353073  ->  1.000000000012255  Inexact Rounded
dddiv4040 divide  3265933651656452   3265933651682779  ->  0.9999999999919389  Inexact Rounded
dddiv4041 divide  5235714985079914   5235714985066131  ->  1.000000000002632  Inexact Rounded
dddiv4042 divide  5578481572827551   5578481572822945  ->  1.000000000000826  Inexact Rounded
dddiv4043 divide  4909616081396134   4909616081373076  ->  1.000000000004696  Inexact Rounded
dddiv4044 divide   636447224349537    636447224338757  ->  1.000000000016938  Inexact Rounded
dddiv4045 divide  1539373428396640   1539373428364727  ->  1.000000000020731  Inexact Rounded
dddiv4046 divide  2028786707377893   2028786707378866  ->  0.9999999999995204  Inexact Rounded
dddiv4047 divide   137643260486222    137643260487419  ->  0.9999999999913036  Inexact Rounded
dddiv4048 divide   247451519746765    247451519752267  ->  0.9999999999777653  Inexact Rounded
dddiv4049 divide  7877858475022054   7877858474999794  ->  1.000000000002826  Inexact Rounded
dddiv4050 divide  7333242694766258   7333242694744628  ->  1.000000000002950  Inexact Rounded
dddiv4051 divide   124051503698592    124051503699397  ->  0.9999999999935108  Inexact Rounded
dddiv4052 divide  8944737432385188   8944737432406860  ->  0.9999999999975771  Inexact Rounded
dddiv4053 divide  9883948923406874   9883948923424843  ->  0.9999999999981820  Inexact Rounded
dddiv4054 divide  6829178741654284   6829178741671973  ->  0.9999999999974098  Inexact Rounded
dddiv4055 divide  7342752479768122   7342752479793385  ->  0.9999999999965595  Inexact Rounded
dddiv4056 divide  8066426579008783   8066426578977563  ->  1.000000000003870  Inexact Rounded
dddiv4057 divide  8992775071383295   8992775071352712  ->  1.000000000003401  Inexact Rounded
dddiv4058 divide  5485011755545641   5485011755543611  ->  1.000000000000370  Inexact Rounded
dddiv4059 divide  5779983054353918   5779983054365300  ->  0.9999999999980308  Inexact Rounded
dddiv4060 divide  9502265102713774   9502265102735208  ->  0.9999999999977443  Inexact Rounded
dddiv4061 divide  2109558399130981   2109558399116281  ->  1.000000000006968  Inexact Rounded
dddiv4062 divide  5296182636350471   5296182636351521  ->  0.9999999999998017  Inexact Rounded
dddiv4063 divide  1440019225591883   1440019225601844  ->  0.9999999999930827  Inexact Rounded
dddiv4064 divide  8182110791881341   8182110791847174  ->  1.000000000004176  Inexact Rounded
dddiv4065 divide   489098235512060    489098235534516  ->  0.9999999999540869  Inexact Rounded
dddiv4066 divide  6475687084782038   6475687084756089  ->  1.000000000004007  Inexact Rounded
dddiv4067 divide  8094348555736948   8094348555759236  ->  0.9999999999972465  Inexact Rounded
dddiv4068 divide  1982766816291543   1982766816309463  ->  0.9999999999909621  Inexact Rounded
dddiv4069 divide  9277314300113251   9277314300084467  ->  1.000000000003103  Inexact Rounded
dddiv4070 divide  4335532959318934   4335532959293167  ->  1.000000000005943  Inexact Rounded
dddiv4071 divide  7767113032981348   7767113032968132  ->  1.000000000001702  Inexact Rounded
dddiv4072 divide  1578548053342868   1578548053370448  ->  0.9999999999825282  Inexact Rounded
dddiv4073 divide  3790420686666898   3790420686636315  ->  1.000000000008068  Inexact Rounded
dddiv4074 divide   871682421955147    871682421976441  ->  0.9999999999755714  Inexact Rounded
dddiv4075 divide   744141054479940    744141054512329  ->  0.9999999999564746  Inexact Rounded
dddiv4076 divide  8956824183670735   8956824183641741  ->  1.000000000003237  Inexact Rounded
dddiv4077 divide  8337291694485682   8337291694451193  ->  1.000000000004137  Inexact Rounded
dddiv4078 divide  4107775944683669   4107775944657097  ->  1.000000000006469  Inexact Rounded
dddiv4079 divide  8691900057964648   8691900057997555  ->  0.9999999999962141  Inexact Rounded
dddiv4080 divide  2229528520536462   2229528520502337  ->  1.000000000015306  Inexact Rounded
dddiv4081 divide   398442083774322    398442083746273  ->  1.000000000070397  Inexact Rounded
dddiv4082 divide  5319819776808759   5319819776838313  ->  0.9999999999944445  Inexact Rounded
dddiv4083 divide  7710491299066855   7710491299041858  ->  1.000000000003242  Inexact Rounded
dddiv4084 divide  9083231296087266   9083231296058160  ->  1.000000000003204  Inexact Rounded
dddiv4085 divide  3566873574904559   3566873574890328  ->  1.000000000003990  Inexact Rounded
dddiv4086 divide   596343290550525    596343290555614  ->  0.9999999999914663  Inexact Rounded
dddiv4087 divide   278227925093192    278227925068104  ->  1.000000000090171  Inexact Rounded
dddiv4088 divide  3292902958490649   3292902958519881  ->  0.9999999999911227  Inexact Rounded
dddiv4089 divide  5521871364245881   5521871364229536  ->  1.000000000002960  Inexact Rounded
dddiv4090 divide  2406505602883617   2406505602857997  ->  1.000000000010646  Inexact Rounded
dddiv4091 divide  7741146984869208   7741146984867255  ->  1.000000000000252  Inexact Rounded
dddiv4092 divide  4576041832414909   4576041832405102  ->  1.000000000002143  Inexact Rounded
dddiv4093 divide  9183756982878057   9183756982901934  ->  0.9999999999974001  Inexact Rounded
dddiv4094 divide  6215736513855159   6215736513870342  ->  0.9999999999975573  Inexact Rounded
dddiv4095 divide   248554968534533    248554968551417  ->  0.9999999999320714  Inexact Rounded
dddiv4096 divide   376314165668645    376314165659755  ->  1.000000000023624  Inexact Rounded
dddiv4097 divide  5513569249809718   5513569249808906  ->  1.000000000000147  Inexact Rounded
dddiv4098 divide  3367992242167904   3367992242156228  ->  1.000000000003467  Inexact Rounded
dddiv4099 divide  6134869538966967   6134869538985986  ->  0.9999999999968999  Inexact Rounded

-- Null tests
dddiv9998 divide 10  # -> NaN Invalid_operation
dddiv9999 divide  # 10 -> NaN Invalid_operation


Youez - 2016 - github.com/yon3zu
LinuXploit