���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  C:/Strawberry/c/lib/python3.9/test/decimaltestdata/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : C:/Strawberry/c/lib/python3.9/test/decimaltestdata/ddAdd.decTest
------------------------------------------------------------------------
-- ddAdd.decTest -- decDouble addition                                --
-- Copyright (c) IBM Corporation, 1981, 2008.  All rights reserved.   --
------------------------------------------------------------------------
-- Please see the document "General Decimal Arithmetic Testcases"     --
-- at http://www2.hursley.ibm.com/decimal for the description of      --
-- these testcases.                                                   --
--                                                                    --
-- These testcases are experimental ('beta' versions), and they       --
-- may contain errors.  They are offered on an as-is basis.  In       --
-- particular, achieving the same results as the tests here is not    --
-- a guarantee that an implementation complies with any Standard      --
-- or specification.  The tests are not exhaustive.                   --
--                                                                    --
-- Please send comments, suggestions, and corrections to the author:  --
--   Mike Cowlishaw, IBM Fellow                                       --
--   IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK         --
--   mfc@uk.ibm.com                                                   --
------------------------------------------------------------------------
version: 2.59

-- This set of tests are for decDoubles only; all arguments are
-- representable in a decDouble
precision:   16
maxExponent: 384
minExponent: -383
extended:    1
clamp:       1
rounding:    half_even

-- [first group are 'quick confidence check']
ddadd001 add 1       1       ->  2
ddadd002 add 2       3       ->  5
ddadd003 add '5.75'  '3.3'   ->  9.05
ddadd004 add '5'     '-3'    ->  2
ddadd005 add '-5'    '-3'    ->  -8
ddadd006 add '-7'    '2.5'   ->  -4.5
ddadd007 add '0.7'   '0.3'   ->  1.0
ddadd008 add '1.25'  '1.25'  ->  2.50
ddadd009 add '1.23456789'  '1.00000000' -> '2.23456789'
ddadd010 add '1.23456789'  '1.00000011' -> '2.23456800'

--             1234567890123456      1234567890123456
ddadd011 add '0.4444444444444446'  '0.5555555555555555' -> '1.000000000000000' Inexact Rounded
ddadd012 add '0.4444444444444445'  '0.5555555555555555' -> '1.000000000000000' Rounded
ddadd013 add '0.4444444444444444'  '0.5555555555555555' -> '0.9999999999999999'
ddadd014 add   '4444444444444444' '0.49'   -> '4444444444444444' Inexact Rounded
ddadd015 add   '4444444444444444' '0.499'  -> '4444444444444444' Inexact Rounded
ddadd016 add   '4444444444444444' '0.4999' -> '4444444444444444' Inexact Rounded
ddadd017 add   '4444444444444444' '0.5000' -> '4444444444444444' Inexact Rounded
ddadd018 add   '4444444444444444' '0.5001' -> '4444444444444445' Inexact Rounded
ddadd019 add   '4444444444444444' '0.501'  -> '4444444444444445' Inexact Rounded
ddadd020 add   '4444444444444444' '0.51'   -> '4444444444444445' Inexact Rounded

ddadd021 add 0 1 -> 1
ddadd022 add 1 1 -> 2
ddadd023 add 2 1 -> 3
ddadd024 add 3 1 -> 4
ddadd025 add 4 1 -> 5
ddadd026 add 5 1 -> 6
ddadd027 add 6 1 -> 7
ddadd028 add 7 1 -> 8
ddadd029 add 8 1 -> 9
ddadd030 add 9 1 -> 10

-- some carrying effects
ddadd031 add '0.9998'  '0.0000' -> '0.9998'
ddadd032 add '0.9998'  '0.0001' -> '0.9999'
ddadd033 add '0.9998'  '0.0002' -> '1.0000'
ddadd034 add '0.9998'  '0.0003' -> '1.0001'

ddadd035 add '70'  '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddadd036 add '700'  '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddadd037 add '7000'  '10000e+16' -> '1.000000000000000E+20' Inexact Rounded
ddadd038 add '70000'  '10000e+16' -> '1.000000000000001E+20' Inexact Rounded
ddadd039 add '700000'  '10000e+16' -> '1.000000000000007E+20' Rounded

-- symmetry:
ddadd040 add '10000e+16'  '70' -> '1.000000000000000E+20' Inexact Rounded
ddadd041 add '10000e+16'  '700' -> '1.000000000000000E+20' Inexact Rounded
ddadd042 add '10000e+16'  '7000' -> '1.000000000000000E+20' Inexact Rounded
ddadd044 add '10000e+16'  '70000' -> '1.000000000000001E+20' Inexact Rounded
ddadd045 add '10000e+16'  '700000' -> '1.000000000000007E+20' Rounded

-- same, without rounding
ddadd046 add '10000e+9'  '7' -> '10000000000007'
ddadd047 add '10000e+9'  '70' -> '10000000000070'
ddadd048 add '10000e+9'  '700' -> '10000000000700'
ddadd049 add '10000e+9'  '7000' -> '10000000007000'
ddadd050 add '10000e+9'  '70000' -> '10000000070000'
ddadd051 add '10000e+9'  '700000' -> '10000000700000'
ddadd052 add '10000e+9'  '7000000' -> '10000007000000'

-- examples from decarith
ddadd053 add '12' '7.00' -> '19.00'
ddadd054 add '1.3' '-1.07' -> '0.23'
ddadd055 add '1.3' '-1.30' -> '0.00'
ddadd056 add '1.3' '-2.07' -> '-0.77'
ddadd057 add '1E+2' '1E+4' -> '1.01E+4'

-- leading zero preservation
ddadd061 add 1 '0.0001' -> '1.0001'
ddadd062 add 1 '0.00001' -> '1.00001'
ddadd063 add 1 '0.000001' -> '1.000001'
ddadd064 add 1 '0.0000001' -> '1.0000001'
ddadd065 add 1 '0.00000001' -> '1.00000001'

-- some funny zeros [in case of bad signum]
ddadd070 add 1  0    -> 1
ddadd071 add 1 0.    -> 1
ddadd072 add 1  .0   -> 1.0
ddadd073 add 1 0.0   -> 1.0
ddadd074 add 1 0.00  -> 1.00
ddadd075 add  0  1   -> 1
ddadd076 add 0.  1   -> 1
ddadd077 add  .0 1   -> 1.0
ddadd078 add 0.0 1   -> 1.0
ddadd079 add 0.00 1  -> 1.00

-- some carries
ddadd080 add 999999998 1  -> 999999999
ddadd081 add 999999999 1  -> 1000000000
ddadd082 add  99999999 1  -> 100000000
ddadd083 add   9999999 1  -> 10000000
ddadd084 add    999999 1  -> 1000000
ddadd085 add     99999 1  -> 100000
ddadd086 add      9999 1  -> 10000
ddadd087 add       999 1  -> 1000
ddadd088 add        99 1  -> 100
ddadd089 add         9 1  -> 10


-- more LHS swaps
ddadd090 add '-56267E-10'   0 ->  '-0.0000056267'
ddadd091 add '-56267E-6'    0 ->  '-0.056267'
ddadd092 add '-56267E-5'    0 ->  '-0.56267'
ddadd093 add '-56267E-4'    0 ->  '-5.6267'
ddadd094 add '-56267E-3'    0 ->  '-56.267'
ddadd095 add '-56267E-2'    0 ->  '-562.67'
ddadd096 add '-56267E-1'    0 ->  '-5626.7'
ddadd097 add '-56267E-0'    0 ->  '-56267'
ddadd098 add '-5E-10'       0 ->  '-5E-10'
ddadd099 add '-5E-7'        0 ->  '-5E-7'
ddadd100 add '-5E-6'        0 ->  '-0.000005'
ddadd101 add '-5E-5'        0 ->  '-0.00005'
ddadd102 add '-5E-4'        0 ->  '-0.0005'
ddadd103 add '-5E-1'        0 ->  '-0.5'
ddadd104 add '-5E0'         0 ->  '-5'
ddadd105 add '-5E1'         0 ->  '-50'
ddadd106 add '-5E5'         0 ->  '-500000'
ddadd107 add '-5E15'        0 ->  '-5000000000000000'
ddadd108 add '-5E16'        0 ->  '-5.000000000000000E+16'  Rounded
ddadd109 add '-5E17'        0 ->  '-5.000000000000000E+17'  Rounded
ddadd110 add '-5E18'        0 ->  '-5.000000000000000E+18'  Rounded
ddadd111 add '-5E100'       0 ->  '-5.000000000000000E+100' Rounded

-- more RHS swaps
ddadd113 add 0  '-56267E-10' ->  '-0.0000056267'
ddadd114 add 0  '-56267E-6'  ->  '-0.056267'
ddadd116 add 0  '-56267E-5'  ->  '-0.56267'
ddadd117 add 0  '-56267E-4'  ->  '-5.6267'
ddadd119 add 0  '-56267E-3'  ->  '-56.267'
ddadd120 add 0  '-56267E-2'  ->  '-562.67'
ddadd121 add 0  '-56267E-1'  ->  '-5626.7'
ddadd122 add 0  '-56267E-0'  ->  '-56267'
ddadd123 add 0  '-5E-10'     ->  '-5E-10'
ddadd124 add 0  '-5E-7'      ->  '-5E-7'
ddadd125 add 0  '-5E-6'      ->  '-0.000005'
ddadd126 add 0  '-5E-5'      ->  '-0.00005'
ddadd127 add 0  '-5E-4'      ->  '-0.0005'
ddadd128 add 0  '-5E-1'      ->  '-0.5'
ddadd129 add 0  '-5E0'       ->  '-5'
ddadd130 add 0  '-5E1'       ->  '-50'
ddadd131 add 0  '-5E5'       ->  '-500000'
ddadd132 add 0  '-5E15'      ->  '-5000000000000000'
ddadd133 add 0  '-5E16'      ->  '-5.000000000000000E+16'   Rounded
ddadd134 add 0  '-5E17'      ->  '-5.000000000000000E+17'   Rounded
ddadd135 add 0  '-5E18'      ->  '-5.000000000000000E+18'   Rounded
ddadd136 add 0  '-5E100'     ->  '-5.000000000000000E+100'  Rounded

-- related
ddadd137 add  1  '0E-19'      ->  '1.000000000000000'  Rounded
ddadd138 add -1  '0E-19'      ->  '-1.000000000000000' Rounded
ddadd139 add '0E-19' 1        ->  '1.000000000000000'  Rounded
ddadd140 add '0E-19' -1       ->  '-1.000000000000000' Rounded
ddadd141 add 1E+11   0.0000   ->  '100000000000.0000'
ddadd142 add 1E+11   0.00000  ->  '100000000000.0000'  Rounded
ddadd143 add 0.000   1E+12    ->  '1000000000000.000'
ddadd144 add 0.0000  1E+12    ->  '1000000000000.000'  Rounded

-- [some of the next group are really constructor tests]
ddadd146 add '00.0'  0       ->  '0.0'
ddadd147 add '0.00'  0       ->  '0.00'
ddadd148 add  0      '0.00'  ->  '0.00'
ddadd149 add  0      '00.0'  ->  '0.0'
ddadd150 add '00.0'  '0.00'  ->  '0.00'
ddadd151 add '0.00'  '00.0'  ->  '0.00'
ddadd152 add '3'     '.3'    ->  '3.3'
ddadd153 add '3.'    '.3'    ->  '3.3'
ddadd154 add '3.0'   '.3'    ->  '3.3'
ddadd155 add '3.00'  '.3'    ->  '3.30'
ddadd156 add '3'     '3'     ->  '6'
ddadd157 add '3'     '+3'    ->  '6'
ddadd158 add '3'     '-3'    ->  '0'
ddadd159 add '0.3'   '-0.3'  ->  '0.0'
ddadd160 add '0.03'  '-0.03' ->  '0.00'

-- try borderline precision, with carries, etc.
ddadd161 add '1E+12' '-1'    -> '999999999999'
ddadd162 add '1E+12'  '1.11' -> '1000000000001.11'
ddadd163 add '1.11'  '1E+12' -> '1000000000001.11'
ddadd164 add '-1'    '1E+12' -> '999999999999'
ddadd165 add '7E+12' '-1'    -> '6999999999999'
ddadd166 add '7E+12'  '1.11' -> '7000000000001.11'
ddadd167 add '1.11'  '7E+12' -> '7000000000001.11'
ddadd168 add '-1'    '7E+12' -> '6999999999999'

rounding: half_up
--           1.234567890123456      1234567890123456      1 234567890123456
ddadd170 add '4.444444444444444'  '0.5555555555555567' -> '5.000000000000001' Inexact Rounded
ddadd171 add '4.444444444444444'  '0.5555555555555566' -> '5.000000000000001' Inexact Rounded
ddadd172 add '4.444444444444444'  '0.5555555555555565' -> '5.000000000000001' Inexact Rounded
ddadd173 add '4.444444444444444'  '0.5555555555555564' -> '5.000000000000000' Inexact Rounded
ddadd174 add '4.444444444444444'  '0.5555555555555553' -> '4.999999999999999' Inexact Rounded
ddadd175 add '4.444444444444444'  '0.5555555555555552' -> '4.999999999999999' Inexact Rounded
ddadd176 add '4.444444444444444'  '0.5555555555555551' -> '4.999999999999999' Inexact Rounded
ddadd177 add '4.444444444444444'  '0.5555555555555550' -> '4.999999999999999' Rounded
ddadd178 add '4.444444444444444'  '0.5555555555555545' -> '4.999999999999999' Inexact Rounded
ddadd179 add '4.444444444444444'  '0.5555555555555544' -> '4.999999999999998' Inexact Rounded
ddadd180 add '4.444444444444444'  '0.5555555555555543' -> '4.999999999999998' Inexact Rounded
ddadd181 add '4.444444444444444'  '0.5555555555555542' -> '4.999999999999998' Inexact Rounded
ddadd182 add '4.444444444444444'  '0.5555555555555541' -> '4.999999999999998' Inexact Rounded
ddadd183 add '4.444444444444444'  '0.5555555555555540' -> '4.999999999999998' Rounded

-- and some more, including residue effects and different roundings
rounding: half_up
ddadd200 add '1234560123456789' 0             -> '1234560123456789'
ddadd201 add '1234560123456789' 0.000000001   -> '1234560123456789' Inexact Rounded
ddadd202 add '1234560123456789' 0.000001      -> '1234560123456789' Inexact Rounded
ddadd203 add '1234560123456789' 0.1           -> '1234560123456789' Inexact Rounded
ddadd204 add '1234560123456789' 0.4           -> '1234560123456789' Inexact Rounded
ddadd205 add '1234560123456789' 0.49          -> '1234560123456789' Inexact Rounded
ddadd206 add '1234560123456789' 0.499999      -> '1234560123456789' Inexact Rounded
ddadd207 add '1234560123456789' 0.499999999   -> '1234560123456789' Inexact Rounded
ddadd208 add '1234560123456789' 0.5           -> '1234560123456790' Inexact Rounded
ddadd209 add '1234560123456789' 0.500000001   -> '1234560123456790' Inexact Rounded
ddadd210 add '1234560123456789' 0.500001      -> '1234560123456790' Inexact Rounded
ddadd211 add '1234560123456789' 0.51          -> '1234560123456790' Inexact Rounded
ddadd212 add '1234560123456789' 0.6           -> '1234560123456790' Inexact Rounded
ddadd213 add '1234560123456789' 0.9           -> '1234560123456790' Inexact Rounded
ddadd214 add '1234560123456789' 0.99999       -> '1234560123456790' Inexact Rounded
ddadd215 add '1234560123456789' 0.999999999   -> '1234560123456790' Inexact Rounded
ddadd216 add '1234560123456789' 1             -> '1234560123456790'
ddadd217 add '1234560123456789' 1.000000001   -> '1234560123456790' Inexact Rounded
ddadd218 add '1234560123456789' 1.00001       -> '1234560123456790' Inexact Rounded
ddadd219 add '1234560123456789' 1.1           -> '1234560123456790' Inexact Rounded

rounding: half_even
ddadd220 add '1234560123456789' 0             -> '1234560123456789'
ddadd221 add '1234560123456789' 0.000000001   -> '1234560123456789' Inexact Rounded
ddadd222 add '1234560123456789' 0.000001      -> '1234560123456789' Inexact Rounded
ddadd223 add '1234560123456789' 0.1           -> '1234560123456789' Inexact Rounded
ddadd224 add '1234560123456789' 0.4           -> '1234560123456789' Inexact Rounded
ddadd225 add '1234560123456789' 0.49          -> '1234560123456789' Inexact Rounded
ddadd226 add '1234560123456789' 0.499999      -> '1234560123456789' Inexact Rounded
ddadd227 add '1234560123456789' 0.499999999   -> '1234560123456789' Inexact Rounded
ddadd228 add '1234560123456789' 0.5           -> '1234560123456790' Inexact Rounded
ddadd229 add '1234560123456789' 0.500000001   -> '1234560123456790' Inexact Rounded
ddadd230 add '1234560123456789' 0.500001      -> '1234560123456790' Inexact Rounded
ddadd231 add '1234560123456789' 0.51          -> '1234560123456790' Inexact Rounded
ddadd232 add '1234560123456789' 0.6           -> '1234560123456790' Inexact Rounded
ddadd233 add '1234560123456789' 0.9           -> '1234560123456790' Inexact Rounded
ddadd234 add '1234560123456789' 0.99999       -> '1234560123456790' Inexact Rounded
ddadd235 add '1234560123456789' 0.999999999   -> '1234560123456790' Inexact Rounded
ddadd236 add '1234560123456789' 1             -> '1234560123456790'
ddadd237 add '1234560123456789' 1.00000001    -> '1234560123456790' Inexact Rounded
ddadd238 add '1234560123456789' 1.00001       -> '1234560123456790' Inexact Rounded
ddadd239 add '1234560123456789' 1.1           -> '1234560123456790' Inexact Rounded
-- critical few with even bottom digit...
ddadd240 add '1234560123456788' 0.499999999   -> '1234560123456788' Inexact Rounded
ddadd241 add '1234560123456788' 0.5           -> '1234560123456788' Inexact Rounded
ddadd242 add '1234560123456788' 0.500000001   -> '1234560123456789' Inexact Rounded

rounding: down
ddadd250 add '1234560123456789' 0             -> '1234560123456789'
ddadd251 add '1234560123456789' 0.000000001   -> '1234560123456789' Inexact Rounded
ddadd252 add '1234560123456789' 0.000001      -> '1234560123456789' Inexact Rounded
ddadd253 add '1234560123456789' 0.1           -> '1234560123456789' Inexact Rounded
ddadd254 add '1234560123456789' 0.4           -> '1234560123456789' Inexact Rounded
ddadd255 add '1234560123456789' 0.49          -> '1234560123456789' Inexact Rounded
ddadd256 add '1234560123456789' 0.499999      -> '1234560123456789' Inexact Rounded
ddadd257 add '1234560123456789' 0.499999999   -> '1234560123456789' Inexact Rounded
ddadd258 add '1234560123456789' 0.5           -> '1234560123456789' Inexact Rounded
ddadd259 add '1234560123456789' 0.500000001   -> '1234560123456789' Inexact Rounded
ddadd260 add '1234560123456789' 0.500001      -> '1234560123456789' Inexact Rounded
ddadd261 add '1234560123456789' 0.51          -> '1234560123456789' Inexact Rounded
ddadd262 add '1234560123456789' 0.6           -> '1234560123456789' Inexact Rounded
ddadd263 add '1234560123456789' 0.9           -> '1234560123456789' Inexact Rounded
ddadd264 add '1234560123456789' 0.99999       -> '1234560123456789' Inexact Rounded
ddadd265 add '1234560123456789' 0.999999999   -> '1234560123456789' Inexact Rounded
ddadd266 add '1234560123456789' 1             -> '1234560123456790'
ddadd267 add '1234560123456789' 1.00000001    -> '1234560123456790' Inexact Rounded
ddadd268 add '1234560123456789' 1.00001       -> '1234560123456790' Inexact Rounded
ddadd269 add '1234560123456789' 1.1           -> '1234560123456790' Inexact Rounded

-- 1 in last place tests
rounding: half_up
ddadd301 add  -1   1      ->   0
ddadd302 add   0   1      ->   1
ddadd303 add   1   1      ->   2
ddadd304 add  12   1      ->  13
ddadd305 add  98   1      ->  99
ddadd306 add  99   1      -> 100
ddadd307 add 100   1      -> 101
ddadd308 add 101   1      -> 102
ddadd309 add  -1  -1      ->  -2
ddadd310 add   0  -1      ->  -1
ddadd311 add   1  -1      ->   0
ddadd312 add  12  -1      ->  11
ddadd313 add  98  -1      ->  97
ddadd314 add  99  -1      ->  98
ddadd315 add 100  -1      ->  99
ddadd316 add 101  -1      -> 100

ddadd321 add -0.01  0.01    ->  0.00
ddadd322 add  0.00  0.01    ->  0.01
ddadd323 add  0.01  0.01    ->  0.02
ddadd324 add  0.12  0.01    ->  0.13
ddadd325 add  0.98  0.01    ->  0.99
ddadd326 add  0.99  0.01    ->  1.00
ddadd327 add  1.00  0.01    ->  1.01
ddadd328 add  1.01  0.01    ->  1.02
ddadd329 add -0.01 -0.01    -> -0.02
ddadd330 add  0.00 -0.01    -> -0.01
ddadd331 add  0.01 -0.01    ->  0.00
ddadd332 add  0.12 -0.01    ->  0.11
ddadd333 add  0.98 -0.01    ->  0.97
ddadd334 add  0.99 -0.01    ->  0.98
ddadd335 add  1.00 -0.01    ->  0.99
ddadd336 add  1.01 -0.01    ->  1.00

-- some more cases where adding 0 affects the coefficient
ddadd340 add 1E+3    0    ->         1000
ddadd341 add 1E+15   0    ->    1000000000000000
ddadd342 add 1E+16   0    ->   1.000000000000000E+16  Rounded
ddadd343 add 1E+20   0    ->   1.000000000000000E+20  Rounded
-- which simply follow from these cases ...
ddadd344 add 1E+3    1    ->         1001
ddadd345 add 1E+15   1    ->    1000000000000001
ddadd346 add 1E+16   1    ->   1.000000000000000E+16  Inexact Rounded
ddadd347 add 1E+20   1    ->   1.000000000000000E+20  Inexact Rounded
ddadd348 add 1E+3    7    ->         1007
ddadd349 add 1E+15   7    ->    1000000000000007
ddadd350 add 1E+16   7    ->   1.000000000000001E+16  Inexact Rounded
ddadd351 add 1E+20   7    ->   1.000000000000000E+20  Inexact Rounded

-- tryzeros cases
rounding:    half_up
ddadd360  add 0E+50 10000E+1  -> 1.0000E+5
ddadd361  add 0E-50 10000E+1  -> 100000.0000000000 Rounded
ddadd362  add 10000E+1 0E-50  -> 100000.0000000000 Rounded
ddadd363  add 10000E+1 10000E-50  -> 100000.0000000000 Rounded Inexact
ddadd364  add 9.999999999999999E+384 -9.999999999999999E+384 -> 0E+369

-- a curiosity from JSR 13 testing
rounding:    half_down
ddadd370 add  999999999999999 815 -> 1000000000000814
ddadd371 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding:    half_up
ddadd372 add  999999999999999 815 -> 1000000000000814
ddadd373 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact
rounding:    half_even
ddadd374 add  999999999999999 815 -> 1000000000000814
ddadd375 add 9999999999999999 815 -> 1.000000000000081E+16 Rounded Inexact

-- operands folded
ddadd380 add   1E+384  1E+384  ->  2.000000000000000E+384  Clamped
ddadd381 add   1E+380  1E+380  ->  2.00000000000E+380      Clamped
ddadd382 add   1E+376  1E+376  ->  2.0000000E+376          Clamped
ddadd383 add   1E+372  1E+372  ->  2.000E+372              Clamped
ddadd384 add   1E+370  1E+370  ->  2.0E+370                Clamped
ddadd385 add   1E+369  1E+369  ->  2E+369
ddadd386 add   1E+368  1E+368  ->  2E+368

-- ulp replacement tests
ddadd400 add   1   77e-14      ->  1.00000000000077
ddadd401 add   1   77e-15      ->  1.000000000000077
ddadd402 add   1   77e-16      ->  1.000000000000008 Inexact Rounded
ddadd403 add   1   77e-17      ->  1.000000000000001 Inexact Rounded
ddadd404 add   1   77e-18      ->  1.000000000000000 Inexact Rounded
ddadd405 add   1   77e-19      ->  1.000000000000000 Inexact Rounded
ddadd406 add   1   77e-299     ->  1.000000000000000 Inexact Rounded

ddadd410 add  10   77e-14      ->  10.00000000000077
ddadd411 add  10   77e-15      ->  10.00000000000008 Inexact Rounded
ddadd412 add  10   77e-16      ->  10.00000000000001 Inexact Rounded
ddadd413 add  10   77e-17      ->  10.00000000000000 Inexact Rounded
ddadd414 add  10   77e-18      ->  10.00000000000000 Inexact Rounded
ddadd415 add  10   77e-19      ->  10.00000000000000 Inexact Rounded
ddadd416 add  10   77e-299     ->  10.00000000000000 Inexact Rounded

ddadd420 add  77e-14       1   ->  1.00000000000077
ddadd421 add  77e-15       1   ->  1.000000000000077
ddadd422 add  77e-16       1   ->  1.000000000000008 Inexact Rounded
ddadd423 add  77e-17       1   ->  1.000000000000001 Inexact Rounded
ddadd424 add  77e-18       1   ->  1.000000000000000 Inexact Rounded
ddadd425 add  77e-19       1   ->  1.000000000000000 Inexact Rounded
ddadd426 add  77e-299      1   ->  1.000000000000000 Inexact Rounded

ddadd430 add  77e-14      10   ->  10.00000000000077
ddadd431 add  77e-15      10   ->  10.00000000000008 Inexact Rounded
ddadd432 add  77e-16      10   ->  10.00000000000001 Inexact Rounded
ddadd433 add  77e-17      10   ->  10.00000000000000 Inexact Rounded
ddadd434 add  77e-18      10   ->  10.00000000000000 Inexact Rounded
ddadd435 add  77e-19      10   ->  10.00000000000000 Inexact Rounded
ddadd436 add  77e-299     10   ->  10.00000000000000 Inexact Rounded

-- fastpath boundary (more in dqadd)
--            1234567890123456
ddadd539 add '4444444444444444'  '3333333333333333' -> '7777777777777777'
ddadd540 add '4444444444444444'  '4444444444444444' -> '8888888888888888'
ddadd541 add '4444444444444444'  '5555555555555555' -> '9999999999999999'
ddadd542 add '3333333333333333'  '4444444444444444' -> '7777777777777777'
ddadd543 add '4444444444444444'  '4444444444444444' -> '8888888888888888'
ddadd544 add '5555555555555555'  '4444444444444444' -> '9999999999999999'
ddadd545 add '3000004000000000'  '3000000000000040' -> '6000004000000040'
ddadd546 add '3000000400000000'  '4000000000000400' -> '7000000400000400'
ddadd547 add '3000000040000000'  '5000000000004000' -> '8000000040004000'
ddadd548 add '4000000004000000'  '3000000000040000' -> '7000000004040000'
ddadd549 add '4000000000400000'  '4000000000400000' -> '8000000000800000'
ddadd550 add '4000000000040000'  '5000000004000000' -> '9000000004040000'
ddadd551 add '5000000000004000'  '3000000040000000' -> '8000000040004000'
ddadd552 add '5000000000000400'  '4000000400000000' -> '9000000400000400'
ddadd553 add '5000000000000040'  '5000004000000000' -> 1.000000400000004E+16 Rounded
-- check propagation
ddadd554 add '8999999999999999'  '0000000000000001' -> 9000000000000000
ddadd555 add '0000000000000001'  '8999999999999999' -> 9000000000000000
ddadd556 add '0999999999999999'  '0000000000000001' -> 1000000000000000
ddadd557 add '0000000000000001'  '0999999999999999' -> 1000000000000000
ddadd558 add '4444444444444444'  '4555555555555556' -> 9000000000000000
ddadd559 add '4555555555555556'  '4444444444444444' -> 9000000000000000

-- negative ulps
ddadd6440 add   1   -77e-14      ->  0.99999999999923
ddadd6441 add   1   -77e-15      ->  0.999999999999923
ddadd6442 add   1   -77e-16      ->  0.9999999999999923
ddadd6443 add   1   -77e-17      ->  0.9999999999999992 Inexact Rounded
ddadd6444 add   1   -77e-18      ->  0.9999999999999999 Inexact Rounded
ddadd6445 add   1   -77e-19      ->  1.000000000000000 Inexact Rounded
ddadd6446 add   1   -77e-99      ->  1.000000000000000 Inexact Rounded

ddadd6450 add  10   -77e-14      ->   9.99999999999923
ddadd6451 add  10   -77e-15      ->   9.999999999999923
ddadd6452 add  10   -77e-16      ->   9.999999999999992 Inexact Rounded
ddadd6453 add  10   -77e-17      ->   9.999999999999999 Inexact Rounded
ddadd6454 add  10   -77e-18      ->  10.00000000000000 Inexact Rounded
ddadd6455 add  10   -77e-19      ->  10.00000000000000 Inexact Rounded
ddadd6456 add  10   -77e-99      ->  10.00000000000000 Inexact Rounded

ddadd6460 add  -77e-14       1   ->  0.99999999999923
ddadd6461 add  -77e-15       1   ->  0.999999999999923
ddadd6462 add  -77e-16       1   ->  0.9999999999999923
ddadd6463 add  -77e-17       1   ->  0.9999999999999992 Inexact Rounded
ddadd6464 add  -77e-18       1   ->  0.9999999999999999 Inexact Rounded
ddadd6465 add  -77e-19       1   ->  1.000000000000000 Inexact Rounded
ddadd6466 add  -77e-99       1   ->  1.000000000000000 Inexact Rounded

ddadd6470 add  -77e-14      10   ->   9.99999999999923
ddadd6471 add  -77e-15      10   ->   9.999999999999923
ddadd6472 add  -77e-16      10   ->   9.999999999999992 Inexact Rounded
ddadd6473 add  -77e-17      10   ->   9.999999999999999 Inexact Rounded
ddadd6474 add  -77e-18      10   ->  10.00000000000000 Inexact Rounded
ddadd6475 add  -77e-19      10   ->  10.00000000000000 Inexact Rounded
ddadd6476 add  -77e-99      10   ->  10.00000000000000 Inexact Rounded

-- negative ulps
ddadd6480 add  -1    77e-14      ->  -0.99999999999923
ddadd6481 add  -1    77e-15      ->  -0.999999999999923
ddadd6482 add  -1    77e-16      ->  -0.9999999999999923
ddadd6483 add  -1    77e-17      ->  -0.9999999999999992 Inexact Rounded
ddadd6484 add  -1    77e-18      ->  -0.9999999999999999 Inexact Rounded
ddadd6485 add  -1    77e-19      ->  -1.000000000000000 Inexact Rounded
ddadd6486 add  -1    77e-99      ->  -1.000000000000000 Inexact Rounded

ddadd6490 add -10    77e-14      ->   -9.99999999999923
ddadd6491 add -10    77e-15      ->   -9.999999999999923
ddadd6492 add -10    77e-16      ->   -9.999999999999992 Inexact Rounded
ddadd6493 add -10    77e-17      ->   -9.999999999999999 Inexact Rounded
ddadd6494 add -10    77e-18      ->  -10.00000000000000 Inexact Rounded
ddadd6495 add -10    77e-19      ->  -10.00000000000000 Inexact Rounded
ddadd6496 add -10    77e-99      ->  -10.00000000000000 Inexact Rounded

ddadd6500 add   77e-14      -1   ->  -0.99999999999923
ddadd6501 add   77e-15      -1   ->  -0.999999999999923
ddadd6502 add   77e-16      -1   ->  -0.9999999999999923
ddadd6503 add   77e-17      -1   ->  -0.9999999999999992 Inexact Rounded
ddadd6504 add   77e-18      -1   ->  -0.9999999999999999 Inexact Rounded
ddadd6505 add   77e-19      -1   ->  -1.000000000000000 Inexact Rounded
ddadd6506 add   77e-99      -1   ->  -1.000000000000000 Inexact Rounded

ddadd6510 add   77e-14      -10  ->   -9.99999999999923
ddadd6511 add   77e-15      -10  ->   -9.999999999999923
ddadd6512 add   77e-16      -10  ->   -9.999999999999992 Inexact Rounded
ddadd6513 add   77e-17      -10  ->   -9.999999999999999 Inexact Rounded
ddadd6514 add   77e-18      -10  ->  -10.00000000000000 Inexact Rounded
ddadd6515 add   77e-19      -10  ->  -10.00000000000000 Inexact Rounded
ddadd6516 add   77e-99      -10  ->  -10.00000000000000 Inexact Rounded

-- and some more residue effects and different roundings
rounding: half_up
ddadd6540 add '6543210123456789' 0             -> '6543210123456789'
ddadd6541 add '6543210123456789' 0.000000001   -> '6543210123456789' Inexact Rounded
ddadd6542 add '6543210123456789' 0.000001      -> '6543210123456789' Inexact Rounded
ddadd6543 add '6543210123456789' 0.1           -> '6543210123456789' Inexact Rounded
ddadd6544 add '6543210123456789' 0.4           -> '6543210123456789' Inexact Rounded
ddadd6545 add '6543210123456789' 0.49          -> '6543210123456789' Inexact Rounded
ddadd6546 add '6543210123456789' 0.499999      -> '6543210123456789' Inexact Rounded
ddadd6547 add '6543210123456789' 0.499999999   -> '6543210123456789' Inexact Rounded
ddadd6548 add '6543210123456789' 0.5           -> '6543210123456790' Inexact Rounded
ddadd6549 add '6543210123456789' 0.500000001   -> '6543210123456790' Inexact Rounded
ddadd6550 add '6543210123456789' 0.500001      -> '6543210123456790' Inexact Rounded
ddadd6551 add '6543210123456789' 0.51          -> '6543210123456790' Inexact Rounded
ddadd6552 add '6543210123456789' 0.6           -> '6543210123456790' Inexact Rounded
ddadd6553 add '6543210123456789' 0.9           -> '6543210123456790' Inexact Rounded
ddadd6554 add '6543210123456789' 0.99999       -> '6543210123456790' Inexact Rounded
ddadd6555 add '6543210123456789' 0.999999999   -> '6543210123456790' Inexact Rounded
ddadd6556 add '6543210123456789' 1             -> '6543210123456790'
ddadd6557 add '6543210123456789' 1.000000001   -> '6543210123456790' Inexact Rounded
ddadd6558 add '6543210123456789' 1.00001       -> '6543210123456790' Inexact Rounded
ddadd6559 add '6543210123456789' 1.1           -> '6543210123456790' Inexact Rounded

rounding: half_even
ddadd6560 add '6543210123456789' 0             -> '6543210123456789'
ddadd6561 add '6543210123456789' 0.000000001   -> '6543210123456789' Inexact Rounded
ddadd6562 add '6543210123456789' 0.000001      -> '6543210123456789' Inexact Rounded
ddadd6563 add '6543210123456789' 0.1           -> '6543210123456789' Inexact Rounded
ddadd6564 add '6543210123456789' 0.4           -> '6543210123456789' Inexact Rounded
ddadd6565 add '6543210123456789' 0.49          -> '6543210123456789' Inexact Rounded
ddadd6566 add '6543210123456789' 0.499999      -> '6543210123456789' Inexact Rounded
ddadd6567 add '6543210123456789' 0.499999999   -> '6543210123456789' Inexact Rounded
ddadd6568 add '6543210123456789' 0.5           -> '6543210123456790' Inexact Rounded
ddadd6569 add '6543210123456789' 0.500000001   -> '6543210123456790' Inexact Rounded
ddadd6570 add '6543210123456789' 0.500001      -> '6543210123456790' Inexact Rounded
ddadd6571 add '6543210123456789' 0.51          -> '6543210123456790' Inexact Rounded
ddadd6572 add '6543210123456789' 0.6           -> '6543210123456790' Inexact Rounded
ddadd6573 add '6543210123456789' 0.9           -> '6543210123456790' Inexact Rounded
ddadd6574 add '6543210123456789' 0.99999       -> '6543210123456790' Inexact Rounded
ddadd6575 add '6543210123456789' 0.999999999   -> '6543210123456790' Inexact Rounded
ddadd6576 add '6543210123456789' 1             -> '6543210123456790'
ddadd6577 add '6543210123456789' 1.00000001    -> '6543210123456790' Inexact Rounded
ddadd6578 add '6543210123456789' 1.00001       -> '6543210123456790' Inexact Rounded
ddadd6579 add '6543210123456789' 1.1           -> '6543210123456790' Inexact Rounded

-- critical few with even bottom digit...
ddadd7540 add '6543210123456788' 0.499999999   -> '6543210123456788' Inexact Rounded
ddadd7541 add '6543210123456788' 0.5           -> '6543210123456788' Inexact Rounded
ddadd7542 add '6543210123456788' 0.500000001   -> '6543210123456789' Inexact Rounded

rounding: down
ddadd7550 add '6543210123456789' 0             -> '6543210123456789'
ddadd7551 add '6543210123456789' 0.000000001   -> '6543210123456789' Inexact Rounded
ddadd7552 add '6543210123456789' 0.000001      -> '6543210123456789' Inexact Rounded
ddadd7553 add '6543210123456789' 0.1           -> '6543210123456789' Inexact Rounded
ddadd7554 add '6543210123456789' 0.4           -> '6543210123456789' Inexact Rounded
ddadd7555 add '6543210123456789' 0.49          -> '6543210123456789' Inexact Rounded
ddadd7556 add '6543210123456789' 0.499999      -> '6543210123456789' Inexact Rounded
ddadd7557 add '6543210123456789' 0.499999999   -> '6543210123456789' Inexact Rounded
ddadd7558 add '6543210123456789' 0.5           -> '6543210123456789' Inexact Rounded
ddadd7559 add '6543210123456789' 0.500000001   -> '6543210123456789' Inexact Rounded
ddadd7560 add '6543210123456789' 0.500001      -> '6543210123456789' Inexact Rounded
ddadd7561 add '6543210123456789' 0.51          -> '6543210123456789' Inexact Rounded
ddadd7562 add '6543210123456789' 0.6           -> '6543210123456789' Inexact Rounded
ddadd7563 add '6543210123456789' 0.9           -> '6543210123456789' Inexact Rounded
ddadd7564 add '6543210123456789' 0.99999       -> '6543210123456789' Inexact Rounded
ddadd7565 add '6543210123456789' 0.999999999   -> '6543210123456789' Inexact Rounded
ddadd7566 add '6543210123456789' 1             -> '6543210123456790'
ddadd7567 add '6543210123456789' 1.00000001    -> '6543210123456790' Inexact Rounded
ddadd7568 add '6543210123456789' 1.00001       -> '6543210123456790' Inexact Rounded
ddadd7569 add '6543210123456789' 1.1           -> '6543210123456790' Inexact Rounded

-- verify a query
rounding:     down
ddadd7661 add 1e-398 9.000000000000000E+384 -> 9.000000000000000E+384 Inexact Rounded
ddadd7662 add      0 9.000000000000000E+384 -> 9.000000000000000E+384 Rounded
ddadd7663 add 1e-388 9.000000000000000E+374 -> 9.000000000000000E+374 Inexact Rounded
ddadd7664 add      0 9.000000000000000E+374 -> 9.000000000000000E+374 Rounded

-- more zeros, etc.
rounding: half_even

ddadd7701 add 5.00 1.00E-3 -> 5.00100
ddadd7702 add 00.00 0.000  -> 0.000
ddadd7703 add 00.00 0E-3   -> 0.000
ddadd7704 add 0E-3  00.00  -> 0.000

ddadd7710 add 0E+3  00.00  -> 0.00
ddadd7711 add 0E+3  00.0   -> 0.0
ddadd7712 add 0E+3  00.    -> 0
ddadd7713 add 0E+3  00.E+1 -> 0E+1
ddadd7714 add 0E+3  00.E+2 -> 0E+2
ddadd7715 add 0E+3  00.E+3 -> 0E+3
ddadd7716 add 0E+3  00.E+4 -> 0E+3
ddadd7717 add 0E+3  00.E+5 -> 0E+3
ddadd7718 add 0E+3  -00.0   -> 0.0
ddadd7719 add 0E+3  -00.    -> 0
ddadd7731 add 0E+3  -00.E+1 -> 0E+1

ddadd7720 add 00.00  0E+3  -> 0.00
ddadd7721 add 00.0   0E+3  -> 0.0
ddadd7722 add 00.    0E+3  -> 0
ddadd7723 add 00.E+1 0E+3  -> 0E+1
ddadd7724 add 00.E+2 0E+3  -> 0E+2
ddadd7725 add 00.E+3 0E+3  -> 0E+3
ddadd7726 add 00.E+4 0E+3  -> 0E+3
ddadd7727 add 00.E+5 0E+3  -> 0E+3
ddadd7728 add -00.00 0E+3  -> 0.00
ddadd7729 add -00.0  0E+3  -> 0.0
ddadd7730 add -00.   0E+3  -> 0

ddadd7732 add  0     0     ->  0
ddadd7733 add  0    -0     ->  0
ddadd7734 add -0     0     ->  0
ddadd7735 add -0    -0     -> -0     -- IEEE 854 special case

ddadd7736 add  1    -1     ->  0
ddadd7737 add -1    -1     -> -2
ddadd7738 add  1     1     ->  2
ddadd7739 add -1     1     ->  0

ddadd7741 add  0    -1     -> -1
ddadd7742 add -0    -1     -> -1
ddadd7743 add  0     1     ->  1
ddadd7744 add -0     1     ->  1
ddadd7745 add -1     0     -> -1
ddadd7746 add -1    -0     -> -1
ddadd7747 add  1     0     ->  1
ddadd7748 add  1    -0     ->  1

ddadd7751 add  0.0  -1     -> -1.0
ddadd7752 add -0.0  -1     -> -1.0
ddadd7753 add  0.0   1     ->  1.0
ddadd7754 add -0.0   1     ->  1.0
ddadd7755 add -1.0   0     -> -1.0
ddadd7756 add -1.0  -0     -> -1.0
ddadd7757 add  1.0   0     ->  1.0
ddadd7758 add  1.0  -0     ->  1.0

ddadd7761 add  0    -1.0   -> -1.0
ddadd7762 add -0    -1.0   -> -1.0
ddadd7763 add  0     1.0   ->  1.0
ddadd7764 add -0     1.0   ->  1.0
ddadd7765 add -1     0.0   -> -1.0
ddadd7766 add -1    -0.0   -> -1.0
ddadd7767 add  1     0.0   ->  1.0
ddadd7768 add  1    -0.0   ->  1.0

ddadd7771 add  0.0  -1.0   -> -1.0
ddadd7772 add -0.0  -1.0   -> -1.0
ddadd7773 add  0.0   1.0   ->  1.0
ddadd7774 add -0.0   1.0   ->  1.0
ddadd7775 add -1.0   0.0   -> -1.0
ddadd7776 add -1.0  -0.0   -> -1.0
ddadd7777 add  1.0   0.0   ->  1.0
ddadd7778 add  1.0  -0.0   ->  1.0

-- Specials
ddadd7780 add -Inf  -Inf   -> -Infinity
ddadd7781 add -Inf  -1000  -> -Infinity
ddadd7782 add -Inf  -1     -> -Infinity
ddadd7783 add -Inf  -0     -> -Infinity
ddadd7784 add -Inf   0     -> -Infinity
ddadd7785 add -Inf   1     -> -Infinity
ddadd7786 add -Inf   1000  -> -Infinity
ddadd7787 add -1000 -Inf   -> -Infinity
ddadd7788 add -Inf  -Inf   -> -Infinity
ddadd7789 add -1    -Inf   -> -Infinity
ddadd7790 add -0    -Inf   -> -Infinity
ddadd7791 add  0    -Inf   -> -Infinity
ddadd7792 add  1    -Inf   -> -Infinity
ddadd7793 add  1000 -Inf   -> -Infinity
ddadd7794 add  Inf  -Inf   ->  NaN  Invalid_operation

ddadd7800 add  Inf  -Inf   ->  NaN  Invalid_operation
ddadd7801 add  Inf  -1000  ->  Infinity
ddadd7802 add  Inf  -1     ->  Infinity
ddadd7803 add  Inf  -0     ->  Infinity
ddadd7804 add  Inf   0     ->  Infinity
ddadd7805 add  Inf   1     ->  Infinity
ddadd7806 add  Inf   1000  ->  Infinity
ddadd7807 add  Inf   Inf   ->  Infinity
ddadd7808 add -1000  Inf   ->  Infinity
ddadd7809 add -Inf   Inf   ->  NaN  Invalid_operation
ddadd7810 add -1     Inf   ->  Infinity
ddadd7811 add -0     Inf   ->  Infinity
ddadd7812 add  0     Inf   ->  Infinity
ddadd7813 add  1     Inf   ->  Infinity
ddadd7814 add  1000  Inf   ->  Infinity
ddadd7815 add  Inf   Inf   ->  Infinity

ddadd7821 add  NaN -Inf    ->  NaN
ddadd7822 add  NaN -1000   ->  NaN
ddadd7823 add  NaN -1      ->  NaN
ddadd7824 add  NaN -0      ->  NaN
ddadd7825 add  NaN  0      ->  NaN
ddadd7826 add  NaN  1      ->  NaN
ddadd7827 add  NaN  1000   ->  NaN
ddadd7828 add  NaN  Inf    ->  NaN
ddadd7829 add  NaN  NaN    ->  NaN
ddadd7830 add -Inf  NaN    ->  NaN
ddadd7831 add -1000 NaN    ->  NaN
ddadd7832 add -1    NaN    ->  NaN
ddadd7833 add -0    NaN    ->  NaN
ddadd7834 add  0    NaN    ->  NaN
ddadd7835 add  1    NaN    ->  NaN
ddadd7836 add  1000 NaN    ->  NaN
ddadd7837 add  Inf  NaN    ->  NaN

ddadd7841 add  sNaN -Inf   ->  NaN  Invalid_operation
ddadd7842 add  sNaN -1000  ->  NaN  Invalid_operation
ddadd7843 add  sNaN -1     ->  NaN  Invalid_operation
ddadd7844 add  sNaN -0     ->  NaN  Invalid_operation
ddadd7845 add  sNaN  0     ->  NaN  Invalid_operation
ddadd7846 add  sNaN  1     ->  NaN  Invalid_operation
ddadd7847 add  sNaN  1000  ->  NaN  Invalid_operation
ddadd7848 add  sNaN  NaN   ->  NaN  Invalid_operation
ddadd7849 add  sNaN sNaN   ->  NaN  Invalid_operation
ddadd7850 add  NaN  sNaN   ->  NaN  Invalid_operation
ddadd7851 add -Inf  sNaN   ->  NaN  Invalid_operation
ddadd7852 add -1000 sNaN   ->  NaN  Invalid_operation
ddadd7853 add -1    sNaN   ->  NaN  Invalid_operation
ddadd7854 add -0    sNaN   ->  NaN  Invalid_operation
ddadd7855 add  0    sNaN   ->  NaN  Invalid_operation
ddadd7856 add  1    sNaN   ->  NaN  Invalid_operation
ddadd7857 add  1000 sNaN   ->  NaN  Invalid_operation
ddadd7858 add  Inf  sNaN   ->  NaN  Invalid_operation
ddadd7859 add  NaN  sNaN   ->  NaN  Invalid_operation

-- propagating NaNs
ddadd7861 add  NaN1   -Inf    ->  NaN1
ddadd7862 add +NaN2   -1000   ->  NaN2
ddadd7863 add  NaN3    1000   ->  NaN3
ddadd7864 add  NaN4    Inf    ->  NaN4
ddadd7865 add  NaN5   +NaN6   ->  NaN5
ddadd7866 add -Inf     NaN7   ->  NaN7
ddadd7867 add -1000    NaN8   ->  NaN8
ddadd7868 add  1000    NaN9   ->  NaN9
ddadd7869 add  Inf    +NaN10  ->  NaN10
ddadd7871 add  sNaN11  -Inf   ->  NaN11  Invalid_operation
ddadd7872 add  sNaN12  -1000  ->  NaN12  Invalid_operation
ddadd7873 add  sNaN13   1000  ->  NaN13  Invalid_operation
ddadd7874 add  sNaN14   NaN17 ->  NaN14  Invalid_operation
ddadd7875 add  sNaN15  sNaN18 ->  NaN15  Invalid_operation
ddadd7876 add  NaN16   sNaN19 ->  NaN19  Invalid_operation
ddadd7877 add -Inf    +sNaN20 ->  NaN20  Invalid_operation
ddadd7878 add -1000    sNaN21 ->  NaN21  Invalid_operation
ddadd7879 add  1000    sNaN22 ->  NaN22  Invalid_operation
ddadd7880 add  Inf     sNaN23 ->  NaN23  Invalid_operation
ddadd7881 add +NaN25  +sNaN24 ->  NaN24  Invalid_operation
ddadd7882 add -NaN26    NaN28 -> -NaN26
ddadd7883 add -sNaN27  sNaN29 -> -NaN27  Invalid_operation
ddadd7884 add  1000    -NaN30 -> -NaN30
ddadd7885 add  1000   -sNaN31 -> -NaN31  Invalid_operation

-- Here we explore near the boundary of rounding a subnormal to Nmin
ddadd7575 add  1E-383 -1E-398 ->  9.99999999999999E-384  Subnormal
ddadd7576 add -1E-383 +1E-398 -> -9.99999999999999E-384  Subnormal

-- and another curious case
ddadd7577 add 7.000000000000E-385 -1.00000E-391 -> 6.999999000000E-385 Subnormal

-- check overflow edge case
--               1234567890123456
ddadd7972 apply   9.999999999999999E+384         -> 9.999999999999999E+384
ddadd7973 add     9.999999999999999E+384  1      -> 9.999999999999999E+384 Inexact Rounded
ddadd7974 add      9999999999999999E+369  1      -> 9.999999999999999E+384 Inexact Rounded
ddadd7975 add      9999999999999999E+369  1E+369  -> Infinity Overflow Inexact Rounded
ddadd7976 add      9999999999999999E+369  9E+368  -> Infinity Overflow Inexact Rounded
ddadd7977 add      9999999999999999E+369  8E+368  -> Infinity Overflow Inexact Rounded
ddadd7978 add      9999999999999999E+369  7E+368  -> Infinity Overflow Inexact Rounded
ddadd7979 add      9999999999999999E+369  6E+368  -> Infinity Overflow Inexact Rounded
ddadd7980 add      9999999999999999E+369  5E+368  -> Infinity Overflow Inexact Rounded
ddadd7981 add      9999999999999999E+369  4E+368  -> 9.999999999999999E+384 Inexact Rounded
ddadd7982 add      9999999999999999E+369  3E+368  -> 9.999999999999999E+384 Inexact Rounded
ddadd7983 add      9999999999999999E+369  2E+368  -> 9.999999999999999E+384 Inexact Rounded
ddadd7984 add      9999999999999999E+369  1E+368  -> 9.999999999999999E+384 Inexact Rounded

ddadd7985 apply  -9.999999999999999E+384         -> -9.999999999999999E+384
ddadd7986 add    -9.999999999999999E+384 -1      -> -9.999999999999999E+384 Inexact Rounded
ddadd7987 add     -9999999999999999E+369 -1      -> -9.999999999999999E+384 Inexact Rounded
ddadd7988 add     -9999999999999999E+369 -1E+369  -> -Infinity Overflow Inexact Rounded
ddadd7989 add     -9999999999999999E+369 -9E+368  -> -Infinity Overflow Inexact Rounded
ddadd7990 add     -9999999999999999E+369 -8E+368  -> -Infinity Overflow Inexact Rounded
ddadd7991 add     -9999999999999999E+369 -7E+368  -> -Infinity Overflow Inexact Rounded
ddadd7992 add     -9999999999999999E+369 -6E+368  -> -Infinity Overflow Inexact Rounded
ddadd7993 add     -9999999999999999E+369 -5E+368  -> -Infinity Overflow Inexact Rounded
ddadd7994 add     -9999999999999999E+369 -4E+368  -> -9.999999999999999E+384 Inexact Rounded
ddadd7995 add     -9999999999999999E+369 -3E+368  -> -9.999999999999999E+384 Inexact Rounded
ddadd7996 add     -9999999999999999E+369 -2E+368  -> -9.999999999999999E+384 Inexact Rounded
ddadd7997 add     -9999999999999999E+369 -1E+368  -> -9.999999999999999E+384 Inexact Rounded

-- And for round down full and subnormal results
rounding:     down
ddadd71100 add 1e+2 -1e-383    -> 99.99999999999999 Rounded Inexact
ddadd71101 add 1e+1 -1e-383    -> 9.999999999999999  Rounded Inexact
ddadd71103 add   +1 -1e-383    -> 0.9999999999999999  Rounded Inexact
ddadd71104 add 1e-1 -1e-383    -> 0.09999999999999999  Rounded Inexact
ddadd71105 add 1e-2 -1e-383    -> 0.009999999999999999  Rounded Inexact
ddadd71106 add 1e-3 -1e-383    -> 0.0009999999999999999  Rounded Inexact
ddadd71107 add 1e-4 -1e-383    -> 0.00009999999999999999  Rounded Inexact
ddadd71108 add 1e-5 -1e-383    -> 0.000009999999999999999  Rounded Inexact
ddadd71109 add 1e-6 -1e-383    -> 9.999999999999999E-7  Rounded Inexact

rounding:     ceiling
ddadd71110 add -1e+2 +1e-383   -> -99.99999999999999 Rounded Inexact
ddadd71111 add -1e+1 +1e-383   -> -9.999999999999999  Rounded Inexact
ddadd71113 add    -1 +1e-383   -> -0.9999999999999999  Rounded Inexact
ddadd71114 add -1e-1 +1e-383   -> -0.09999999999999999  Rounded Inexact
ddadd71115 add -1e-2 +1e-383   -> -0.009999999999999999  Rounded Inexact
ddadd71116 add -1e-3 +1e-383   -> -0.0009999999999999999  Rounded Inexact
ddadd71117 add -1e-4 +1e-383   -> -0.00009999999999999999  Rounded Inexact
ddadd71118 add -1e-5 +1e-383   -> -0.000009999999999999999  Rounded Inexact
ddadd71119 add -1e-6 +1e-383   -> -9.999999999999999E-7  Rounded Inexact

-- tests based on Gunnar Degnbol's edge case
rounding:     half_even

ddadd71300 add 1E16  -0.5                 ->  1.000000000000000E+16 Inexact Rounded
ddadd71310 add 1E16  -0.51                ->  9999999999999999      Inexact Rounded
ddadd71311 add 1E16  -0.501               ->  9999999999999999      Inexact Rounded
ddadd71312 add 1E16  -0.5001              ->  9999999999999999      Inexact Rounded
ddadd71313 add 1E16  -0.50001             ->  9999999999999999      Inexact Rounded
ddadd71314 add 1E16  -0.500001            ->  9999999999999999      Inexact Rounded
ddadd71315 add 1E16  -0.5000001           ->  9999999999999999      Inexact Rounded
ddadd71316 add 1E16  -0.50000001          ->  9999999999999999      Inexact Rounded
ddadd71317 add 1E16  -0.500000001         ->  9999999999999999      Inexact Rounded
ddadd71318 add 1E16  -0.5000000001        ->  9999999999999999      Inexact Rounded
ddadd71319 add 1E16  -0.50000000001       ->  9999999999999999      Inexact Rounded
ddadd71320 add 1E16  -0.500000000001      ->  9999999999999999      Inexact Rounded
ddadd71321 add 1E16  -0.5000000000001     ->  9999999999999999      Inexact Rounded
ddadd71322 add 1E16  -0.50000000000001    ->  9999999999999999      Inexact Rounded
ddadd71323 add 1E16  -0.500000000000001   ->  9999999999999999      Inexact Rounded
ddadd71324 add 1E16  -0.5000000000000001  ->  9999999999999999      Inexact Rounded
ddadd71325 add 1E16  -0.5000000000000000  ->  1.000000000000000E+16 Inexact Rounded
ddadd71326 add 1E16  -0.500000000000000   ->  1.000000000000000E+16 Inexact Rounded
ddadd71327 add 1E16  -0.50000000000000    ->  1.000000000000000E+16 Inexact Rounded
ddadd71328 add 1E16  -0.5000000000000     ->  1.000000000000000E+16 Inexact Rounded
ddadd71329 add 1E16  -0.500000000000      ->  1.000000000000000E+16 Inexact Rounded
ddadd71330 add 1E16  -0.50000000000       ->  1.000000000000000E+16 Inexact Rounded
ddadd71331 add 1E16  -0.5000000000        ->  1.000000000000000E+16 Inexact Rounded
ddadd71332 add 1E16  -0.500000000         ->  1.000000000000000E+16 Inexact Rounded
ddadd71333 add 1E16  -0.50000000          ->  1.000000000000000E+16 Inexact Rounded
ddadd71334 add 1E16  -0.5000000           ->  1.000000000000000E+16 Inexact Rounded
ddadd71335 add 1E16  -0.500000            ->  1.000000000000000E+16 Inexact Rounded
ddadd71336 add 1E16  -0.50000             ->  1.000000000000000E+16 Inexact Rounded
ddadd71337 add 1E16  -0.5000              ->  1.000000000000000E+16 Inexact Rounded
ddadd71338 add 1E16  -0.500               ->  1.000000000000000E+16 Inexact Rounded
ddadd71339 add 1E16  -0.50                ->  1.000000000000000E+16 Inexact Rounded

ddadd71340 add 1E16  -5000000.000010001   ->  9999999995000000      Inexact Rounded
ddadd71341 add 1E16  -5000000.000000001   ->  9999999995000000      Inexact Rounded

ddadd71349 add 9999999999999999 0.4                 ->  9999999999999999      Inexact Rounded
ddadd71350 add 9999999999999999 0.49                ->  9999999999999999      Inexact Rounded
ddadd71351 add 9999999999999999 0.499               ->  9999999999999999      Inexact Rounded
ddadd71352 add 9999999999999999 0.4999              ->  9999999999999999      Inexact Rounded
ddadd71353 add 9999999999999999 0.49999             ->  9999999999999999      Inexact Rounded
ddadd71354 add 9999999999999999 0.499999            ->  9999999999999999      Inexact Rounded
ddadd71355 add 9999999999999999 0.4999999           ->  9999999999999999      Inexact Rounded
ddadd71356 add 9999999999999999 0.49999999          ->  9999999999999999      Inexact Rounded
ddadd71357 add 9999999999999999 0.499999999         ->  9999999999999999      Inexact Rounded
ddadd71358 add 9999999999999999 0.4999999999        ->  9999999999999999      Inexact Rounded
ddadd71359 add 9999999999999999 0.49999999999       ->  9999999999999999      Inexact Rounded
ddadd71360 add 9999999999999999 0.499999999999      ->  9999999999999999      Inexact Rounded
ddadd71361 add 9999999999999999 0.4999999999999     ->  9999999999999999      Inexact Rounded
ddadd71362 add 9999999999999999 0.49999999999999    ->  9999999999999999      Inexact Rounded
ddadd71363 add 9999999999999999 0.499999999999999   ->  9999999999999999      Inexact Rounded
ddadd71364 add 9999999999999999 0.4999999999999999  ->  9999999999999999      Inexact Rounded
ddadd71365 add 9999999999999999 0.5000000000000000  ->  1.000000000000000E+16 Inexact Rounded
ddadd71367 add 9999999999999999 0.500000000000000   ->  1.000000000000000E+16 Inexact Rounded
ddadd71368 add 9999999999999999 0.50000000000000    ->  1.000000000000000E+16 Inexact Rounded
ddadd71369 add 9999999999999999 0.5000000000000     ->  1.000000000000000E+16 Inexact Rounded
ddadd71370 add 9999999999999999 0.500000000000      ->  1.000000000000000E+16 Inexact Rounded
ddadd71371 add 9999999999999999 0.50000000000       ->  1.000000000000000E+16 Inexact Rounded
ddadd71372 add 9999999999999999 0.5000000000        ->  1.000000000000000E+16 Inexact Rounded
ddadd71373 add 9999999999999999 0.500000000         ->  1.000000000000000E+16 Inexact Rounded
ddadd71374 add 9999999999999999 0.50000000          ->  1.000000000000000E+16 Inexact Rounded
ddadd71375 add 9999999999999999 0.5000000           ->  1.000000000000000E+16 Inexact Rounded
ddadd71376 add 9999999999999999 0.500000            ->  1.000000000000000E+16 Inexact Rounded
ddadd71377 add 9999999999999999 0.50000             ->  1.000000000000000E+16 Inexact Rounded
ddadd71378 add 9999999999999999 0.5000              ->  1.000000000000000E+16 Inexact Rounded
ddadd71379 add 9999999999999999 0.500               ->  1.000000000000000E+16 Inexact Rounded
ddadd71380 add 9999999999999999 0.50                ->  1.000000000000000E+16 Inexact Rounded
ddadd71381 add 9999999999999999 0.5                 ->  1.000000000000000E+16 Inexact Rounded
ddadd71382 add 9999999999999999 0.5000000000000001  ->  1.000000000000000E+16 Inexact Rounded
ddadd71383 add 9999999999999999 0.500000000000001   ->  1.000000000000000E+16 Inexact Rounded
ddadd71384 add 9999999999999999 0.50000000000001    ->  1.000000000000000E+16 Inexact Rounded
ddadd71385 add 9999999999999999 0.5000000000001     ->  1.000000000000000E+16 Inexact Rounded
ddadd71386 add 9999999999999999 0.500000000001      ->  1.000000000000000E+16 Inexact Rounded
ddadd71387 add 9999999999999999 0.50000000001       ->  1.000000000000000E+16 Inexact Rounded
ddadd71388 add 9999999999999999 0.5000000001        ->  1.000000000000000E+16 Inexact Rounded
ddadd71389 add 9999999999999999 0.500000001         ->  1.000000000000000E+16 Inexact Rounded
ddadd71390 add 9999999999999999 0.50000001          ->  1.000000000000000E+16 Inexact Rounded
ddadd71391 add 9999999999999999 0.5000001           ->  1.000000000000000E+16 Inexact Rounded
ddadd71392 add 9999999999999999 0.500001            ->  1.000000000000000E+16 Inexact Rounded
ddadd71393 add 9999999999999999 0.50001             ->  1.000000000000000E+16 Inexact Rounded
ddadd71394 add 9999999999999999 0.5001              ->  1.000000000000000E+16 Inexact Rounded
ddadd71395 add 9999999999999999 0.501               ->  1.000000000000000E+16 Inexact Rounded
ddadd71396 add 9999999999999999 0.51                ->  1.000000000000000E+16 Inexact Rounded

-- More GD edge cases, where difference between the unadjusted
-- exponents is larger than the maximum precision and one side is 0
ddadd71420 add  0 1.123456789012345     -> 1.123456789012345
ddadd71421 add  0 1.123456789012345E-1  -> 0.1123456789012345
ddadd71422 add  0 1.123456789012345E-2  -> 0.01123456789012345
ddadd71423 add  0 1.123456789012345E-3  -> 0.001123456789012345
ddadd71424 add  0 1.123456789012345E-4  -> 0.0001123456789012345
ddadd71425 add  0 1.123456789012345E-5  -> 0.00001123456789012345
ddadd71426 add  0 1.123456789012345E-6  -> 0.000001123456789012345
ddadd71427 add  0 1.123456789012345E-7  -> 1.123456789012345E-7
ddadd71428 add  0 1.123456789012345E-8  -> 1.123456789012345E-8
ddadd71429 add  0 1.123456789012345E-9  -> 1.123456789012345E-9
ddadd71430 add  0 1.123456789012345E-10 -> 1.123456789012345E-10
ddadd71431 add  0 1.123456789012345E-11 -> 1.123456789012345E-11
ddadd71432 add  0 1.123456789012345E-12 -> 1.123456789012345E-12
ddadd71433 add  0 1.123456789012345E-13 -> 1.123456789012345E-13
ddadd71434 add  0 1.123456789012345E-14 -> 1.123456789012345E-14
ddadd71435 add  0 1.123456789012345E-15 -> 1.123456789012345E-15
ddadd71436 add  0 1.123456789012345E-16 -> 1.123456789012345E-16
ddadd71437 add  0 1.123456789012345E-17 -> 1.123456789012345E-17
ddadd71438 add  0 1.123456789012345E-18 -> 1.123456789012345E-18
ddadd71439 add  0 1.123456789012345E-19 -> 1.123456789012345E-19

-- same, reversed 0
ddadd71440 add 1.123456789012345     0 -> 1.123456789012345
ddadd71441 add 1.123456789012345E-1  0 -> 0.1123456789012345
ddadd71442 add 1.123456789012345E-2  0 -> 0.01123456789012345
ddadd71443 add 1.123456789012345E-3  0 -> 0.001123456789012345
ddadd71444 add 1.123456789012345E-4  0 -> 0.0001123456789012345
ddadd71445 add 1.123456789012345E-5  0 -> 0.00001123456789012345
ddadd71446 add 1.123456789012345E-6  0 -> 0.000001123456789012345
ddadd71447 add 1.123456789012345E-7  0 -> 1.123456789012345E-7
ddadd71448 add 1.123456789012345E-8  0 -> 1.123456789012345E-8
ddadd71449 add 1.123456789012345E-9  0 -> 1.123456789012345E-9
ddadd71450 add 1.123456789012345E-10 0 -> 1.123456789012345E-10
ddadd71451 add 1.123456789012345E-11 0 -> 1.123456789012345E-11
ddadd71452 add 1.123456789012345E-12 0 -> 1.123456789012345E-12
ddadd71453 add 1.123456789012345E-13 0 -> 1.123456789012345E-13
ddadd71454 add 1.123456789012345E-14 0 -> 1.123456789012345E-14
ddadd71455 add 1.123456789012345E-15 0 -> 1.123456789012345E-15
ddadd71456 add 1.123456789012345E-16 0 -> 1.123456789012345E-16
ddadd71457 add 1.123456789012345E-17 0 -> 1.123456789012345E-17
ddadd71458 add 1.123456789012345E-18 0 -> 1.123456789012345E-18
ddadd71459 add 1.123456789012345E-19 0 -> 1.123456789012345E-19

-- same, Es on the 0
ddadd71460 add 1.123456789012345  0E-0   -> 1.123456789012345
ddadd71461 add 1.123456789012345  0E-1   -> 1.123456789012345
ddadd71462 add 1.123456789012345  0E-2   -> 1.123456789012345
ddadd71463 add 1.123456789012345  0E-3   -> 1.123456789012345
ddadd71464 add 1.123456789012345  0E-4   -> 1.123456789012345
ddadd71465 add 1.123456789012345  0E-5   -> 1.123456789012345
ddadd71466 add 1.123456789012345  0E-6   -> 1.123456789012345
ddadd71467 add 1.123456789012345  0E-7   -> 1.123456789012345
ddadd71468 add 1.123456789012345  0E-8   -> 1.123456789012345
ddadd71469 add 1.123456789012345  0E-9   -> 1.123456789012345
ddadd71470 add 1.123456789012345  0E-10  -> 1.123456789012345
ddadd71471 add 1.123456789012345  0E-11  -> 1.123456789012345
ddadd71472 add 1.123456789012345  0E-12  -> 1.123456789012345
ddadd71473 add 1.123456789012345  0E-13  -> 1.123456789012345
ddadd71474 add 1.123456789012345  0E-14  -> 1.123456789012345
ddadd71475 add 1.123456789012345  0E-15  -> 1.123456789012345
-- next four flag Rounded because the 0 extends the result
ddadd71476 add 1.123456789012345  0E-16  -> 1.123456789012345 Rounded
ddadd71477 add 1.123456789012345  0E-17  -> 1.123456789012345 Rounded
ddadd71478 add 1.123456789012345  0E-18  -> 1.123456789012345 Rounded
ddadd71479 add 1.123456789012345  0E-19  -> 1.123456789012345 Rounded

-- sum of two opposite-sign operands is exactly 0 and floor => -0
rounding:    half_up
-- exact zeros from zeros
ddadd71500 add  0        0E-19  ->  0E-19
ddadd71501 add -0        0E-19  ->  0E-19
ddadd71502 add  0       -0E-19  ->  0E-19
ddadd71503 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71511 add -11      11    ->  0
ddadd71512 add  11     -11    ->  0

rounding:    half_down
-- exact zeros from zeros
ddadd71520 add  0        0E-19  ->  0E-19
ddadd71521 add -0        0E-19  ->  0E-19
ddadd71522 add  0       -0E-19  ->  0E-19
ddadd71523 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71531 add -11      11    ->  0
ddadd71532 add  11     -11    ->  0

rounding:    half_even
-- exact zeros from zeros
ddadd71540 add  0        0E-19  ->  0E-19
ddadd71541 add -0        0E-19  ->  0E-19
ddadd71542 add  0       -0E-19  ->  0E-19
ddadd71543 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71551 add -11      11    ->  0
ddadd71552 add  11     -11    ->  0

rounding:    up
-- exact zeros from zeros
ddadd71560 add  0        0E-19  ->  0E-19
ddadd71561 add -0        0E-19  ->  0E-19
ddadd71562 add  0       -0E-19  ->  0E-19
ddadd71563 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71571 add -11      11    ->  0
ddadd71572 add  11     -11    ->  0

rounding:    down
-- exact zeros from zeros
ddadd71580 add  0        0E-19  ->  0E-19
ddadd71581 add -0        0E-19  ->  0E-19
ddadd71582 add  0       -0E-19  ->  0E-19
ddadd71583 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71591 add -11      11    ->  0
ddadd71592 add  11     -11    ->  0

rounding:    ceiling
-- exact zeros from zeros
ddadd71600 add  0        0E-19  ->  0E-19
ddadd71601 add -0        0E-19  ->  0E-19
ddadd71602 add  0       -0E-19  ->  0E-19
ddadd71603 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71611 add -11      11    ->  0
ddadd71612 add  11     -11    ->  0

-- and the extra-special ugly case; unusual minuses marked by -- *
rounding:    floor
-- exact zeros from zeros
ddadd71620 add  0        0E-19  ->  0E-19
ddadd71621 add -0        0E-19  -> -0E-19           -- *
ddadd71622 add  0       -0E-19  -> -0E-19           -- *
ddadd71623 add -0       -0E-19  -> -0E-19
-- exact zeros from non-zeros
ddadd71631 add -11      11    ->  -0                -- *
ddadd71632 add  11     -11    ->  -0                -- *

-- Examples from SQL proposal (Krishna Kulkarni)
ddadd71701 add 130E-2    120E-2    -> 2.50
ddadd71702 add 130E-2    12E-1     -> 2.50
ddadd71703 add 130E-2    1E0       -> 2.30
ddadd71704 add 1E2       1E4       -> 1.01E+4
ddadd71705 add 130E-2   -120E-2 -> 0.10
ddadd71706 add 130E-2   -12E-1  -> 0.10
ddadd71707 add 130E-2   -1E0    -> 0.30
ddadd71708 add 1E2      -1E4    -> -9.9E+3

-- query from Vincent Kulandaisamy
rounding: ceiling
ddadd71801  add  7.8822773805862E+277    -5.1757503820663E-21 -> 7.882277380586200E+277 Inexact Rounded
ddadd71802  add  7.882277380586200E+277  12.341               -> 7.882277380586201E+277 Inexact Rounded
ddadd71803  add  7.882277380586201E+277  2.7270545046613E-31  -> 7.882277380586202E+277 Inexact Rounded

ddadd71811  add                   12.341 -5.1757503820663E-21 -> 12.34100000000000      Inexact Rounded
ddadd71812  add        12.34100000000000 2.7270545046613E-31  -> 12.34100000000001      Inexact Rounded
ddadd71813  add        12.34100000000001 7.8822773805862E+277 -> 7.882277380586201E+277 Inexact Rounded

-- Gappy coefficients; check residue handling even with full coefficient gap
rounding: half_even

ddadd75001 add 1234567890123456 1      -> 1234567890123457
ddadd75002 add 1234567890123456 0.6    -> 1234567890123457  Inexact Rounded
ddadd75003 add 1234567890123456 0.06   -> 1234567890123456  Inexact Rounded
ddadd75004 add 1234567890123456 6E-3   -> 1234567890123456  Inexact Rounded
ddadd75005 add 1234567890123456 6E-4   -> 1234567890123456  Inexact Rounded
ddadd75006 add 1234567890123456 6E-5   -> 1234567890123456  Inexact Rounded
ddadd75007 add 1234567890123456 6E-6   -> 1234567890123456  Inexact Rounded
ddadd75008 add 1234567890123456 6E-7   -> 1234567890123456  Inexact Rounded
ddadd75009 add 1234567890123456 6E-8   -> 1234567890123456  Inexact Rounded
ddadd75010 add 1234567890123456 6E-9   -> 1234567890123456  Inexact Rounded
ddadd75011 add 1234567890123456 6E-10  -> 1234567890123456  Inexact Rounded
ddadd75012 add 1234567890123456 6E-11  -> 1234567890123456  Inexact Rounded
ddadd75013 add 1234567890123456 6E-12  -> 1234567890123456  Inexact Rounded
ddadd75014 add 1234567890123456 6E-13  -> 1234567890123456  Inexact Rounded
ddadd75015 add 1234567890123456 6E-14  -> 1234567890123456  Inexact Rounded
ddadd75016 add 1234567890123456 6E-15  -> 1234567890123456  Inexact Rounded
ddadd75017 add 1234567890123456 6E-16  -> 1234567890123456  Inexact Rounded
ddadd75018 add 1234567890123456 6E-17  -> 1234567890123456  Inexact Rounded
ddadd75019 add 1234567890123456 6E-18  -> 1234567890123456  Inexact Rounded
ddadd75020 add 1234567890123456 6E-19  -> 1234567890123456  Inexact Rounded
ddadd75021 add 1234567890123456 6E-20  -> 1234567890123456  Inexact Rounded

-- widening second argument at gap
ddadd75030 add 12345678 1                       -> 12345679
ddadd75031 add 12345678 0.1                     -> 12345678.1
ddadd75032 add 12345678 0.12                    -> 12345678.12
ddadd75033 add 12345678 0.123                   -> 12345678.123
ddadd75034 add 12345678 0.1234                  -> 12345678.1234
ddadd75035 add 12345678 0.12345                 -> 12345678.12345
ddadd75036 add 12345678 0.123456                -> 12345678.123456
ddadd75037 add 12345678 0.1234567               -> 12345678.1234567
ddadd75038 add 12345678 0.12345678              -> 12345678.12345678
ddadd75039 add 12345678 0.123456789             -> 12345678.12345679 Inexact Rounded
ddadd75040 add 12345678 0.123456785             -> 12345678.12345678 Inexact Rounded
ddadd75041 add 12345678 0.1234567850            -> 12345678.12345678 Inexact Rounded
ddadd75042 add 12345678 0.1234567851            -> 12345678.12345679 Inexact Rounded
ddadd75043 add 12345678 0.12345678501           -> 12345678.12345679 Inexact Rounded
ddadd75044 add 12345678 0.123456785001          -> 12345678.12345679 Inexact Rounded
ddadd75045 add 12345678 0.1234567850001         -> 12345678.12345679 Inexact Rounded
ddadd75046 add 12345678 0.12345678500001        -> 12345678.12345679 Inexact Rounded
ddadd75047 add 12345678 0.123456785000001       -> 12345678.12345679 Inexact Rounded
ddadd75048 add 12345678 0.1234567850000001      -> 12345678.12345679 Inexact Rounded
ddadd75049 add 12345678 0.1234567850000000      -> 12345678.12345678 Inexact Rounded
--                               90123456
rounding: half_even
ddadd75050 add 12345678 0.0234567750000000      -> 12345678.02345678 Inexact Rounded
ddadd75051 add 12345678 0.0034567750000000      -> 12345678.00345678 Inexact Rounded
ddadd75052 add 12345678 0.0004567750000000      -> 12345678.00045678 Inexact Rounded
ddadd75053 add 12345678 0.0000567750000000      -> 12345678.00005678 Inexact Rounded
ddadd75054 add 12345678 0.0000067750000000      -> 12345678.00000678 Inexact Rounded
ddadd75055 add 12345678 0.0000007750000000      -> 12345678.00000078 Inexact Rounded
ddadd75056 add 12345678 0.0000000750000000      -> 12345678.00000008 Inexact Rounded
ddadd75057 add 12345678 0.0000000050000000      -> 12345678.00000000 Inexact Rounded
ddadd75060 add 12345678 0.0234567750000001      -> 12345678.02345678 Inexact Rounded
ddadd75061 add 12345678 0.0034567750000001      -> 12345678.00345678 Inexact Rounded
ddadd75062 add 12345678 0.0004567750000001      -> 12345678.00045678 Inexact Rounded
ddadd75063 add 12345678 0.0000567750000001      -> 12345678.00005678 Inexact Rounded
ddadd75064 add 12345678 0.0000067750000001      -> 12345678.00000678 Inexact Rounded
ddadd75065 add 12345678 0.0000007750000001      -> 12345678.00000078 Inexact Rounded
ddadd75066 add 12345678 0.0000000750000001      -> 12345678.00000008 Inexact Rounded
ddadd75067 add 12345678 0.0000000050000001      -> 12345678.00000001 Inexact Rounded
-- far-out residues (full coefficient gap is 16+15 digits)
rounding: up
ddadd75070 add 12345678 1E-8                    -> 12345678.00000001
ddadd75071 add 12345678 1E-9                    -> 12345678.00000001 Inexact Rounded
ddadd75072 add 12345678 1E-10                   -> 12345678.00000001 Inexact Rounded
ddadd75073 add 12345678 1E-11                   -> 12345678.00000001 Inexact Rounded
ddadd75074 add 12345678 1E-12                   -> 12345678.00000001 Inexact Rounded
ddadd75075 add 12345678 1E-13                   -> 12345678.00000001 Inexact Rounded
ddadd75076 add 12345678 1E-14                   -> 12345678.00000001 Inexact Rounded
ddadd75077 add 12345678 1E-15                   -> 12345678.00000001 Inexact Rounded
ddadd75078 add 12345678 1E-16                   -> 12345678.00000001 Inexact Rounded
ddadd75079 add 12345678 1E-17                   -> 12345678.00000001 Inexact Rounded
ddadd75080 add 12345678 1E-18                   -> 12345678.00000001 Inexact Rounded
ddadd75081 add 12345678 1E-19                   -> 12345678.00000001 Inexact Rounded
ddadd75082 add 12345678 1E-20                   -> 12345678.00000001 Inexact Rounded
ddadd75083 add 12345678 1E-25                   -> 12345678.00000001 Inexact Rounded
ddadd75084 add 12345678 1E-30                   -> 12345678.00000001 Inexact Rounded
ddadd75085 add 12345678 1E-31                   -> 12345678.00000001 Inexact Rounded
ddadd75086 add 12345678 1E-32                   -> 12345678.00000001 Inexact Rounded
ddadd75087 add 12345678 1E-33                   -> 12345678.00000001 Inexact Rounded
ddadd75088 add 12345678 1E-34                   -> 12345678.00000001 Inexact Rounded
ddadd75089 add 12345678 1E-35                   -> 12345678.00000001 Inexact Rounded

-- Punit's
ddadd75100 add 1.000 -200.000                   -> -199.000

-- Rounding swathe
rounding: half_even
ddadd81100 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81101 add  .2301    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81102 add  .2310    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81103 add  .2350    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81104 add  .2351    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81105 add  .2450    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81106 add  .2451    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81107 add  .2360    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81108 add  .2370    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81109 add  .2399    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81120 add  9999999999999999E+369  9E+369  ->  Infinity Overflow  Inexact Rounded
ddadd81121 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow  Inexact Rounded

rounding: half_up
ddadd81200 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81201 add  .2301    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81202 add  .2310    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81203 add  .2350    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81204 add  .2351    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81205 add  .2450    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81206 add  .2451    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81207 add  .2360    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81208 add  .2370    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81209 add  .2399    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81220 add  9999999999999999E+369  9E+369 ->  Infinity Overflow  Inexact Rounded
ddadd81221 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow  Inexact Rounded

rounding: half_down
ddadd81300 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81301 add  .2301    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81302 add  .2310    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81303 add  .2350    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81304 add  .2351    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81305 add  .2450    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81306 add  .2451    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81307 add  .2360    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81308 add  .2370    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81309 add  .2399    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81320 add  9999999999999999E+369  9E+369 ->  Infinity Overflow  Inexact Rounded
ddadd81321 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow  Inexact Rounded

rounding: up
ddadd81400 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81401 add  .2301    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81402 add  .2310    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81403 add  .2350    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81404 add  .2351    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81405 add  .2450    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81406 add  .2451    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81407 add  .2360    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81408 add  .2370    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81409 add  .2399    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81411 add -.2399   -12345678901234.00    -> -12345678901234.24  Inexact Rounded
ddadd81420 add  9999999999999999E+369  9E+369 ->  Infinity Overflow  Inexact Rounded
ddadd81421 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow  Inexact Rounded

rounding: down
ddadd81500 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81501 add  .2301    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81502 add  .2310    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81503 add  .2350    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81504 add  .2351    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81505 add  .2450    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81506 add  .2451    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81507 add  .2360    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81508 add  .2370    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81509 add  .2399    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81511 add -.2399   -12345678901234.00    -> -12345678901234.23  Inexact Rounded
ddadd81520 add  9999999999999999E+369  9E+369 ->  9.999999999999999E+384 Overflow  Inexact Rounded
ddadd81521 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow  Inexact Rounded

rounding: ceiling
ddadd81600 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81601 add  .2301    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81602 add  .2310    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81603 add  .2350    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81604 add  .2351    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81605 add  .2450    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81606 add  .2451    12345678901234.00    ->  12345678901234.25  Inexact Rounded
ddadd81607 add  .2360    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81608 add  .2370    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81609 add  .2399    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81611 add -.2399   -12345678901234.00    -> -12345678901234.23  Inexact Rounded
ddadd81620 add  9999999999999999E+369  9E+369 ->  Infinity Overflow  Inexact Rounded
ddadd81621 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow  Inexact Rounded

rounding: floor
ddadd81700 add  .2300    12345678901234.00    ->  12345678901234.23  Rounded
ddadd81701 add  .2301    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81702 add  .2310    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81703 add  .2350    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81704 add  .2351    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81705 add  .2450    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81706 add  .2451    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd81707 add  .2360    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81708 add  .2370    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81709 add  .2399    12345678901234.00    ->  12345678901234.23  Inexact Rounded
ddadd81711 add -.2399   -12345678901234.00    -> -12345678901234.24  Inexact Rounded
ddadd81720 add  9999999999999999E+369  9E+369 ->  9.999999999999999E+384 Overflow  Inexact Rounded
ddadd81721 add -9999999999999999E+369 -9E+369 -> -Infinity Overflow  Inexact Rounded

rounding: 05up
ddadd81800 add  .2000    12345678901234.00    ->  12345678901234.20  Rounded
ddadd81801 add  .2001    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81802 add  .2010    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81803 add  .2050    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81804 add  .2051    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81807 add  .2060    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81808 add  .2070    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81809 add  .2099    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81811 add -.2099   -12345678901234.00    -> -12345678901234.21  Inexact Rounded
ddadd81820 add  9999999999999999E+369  9E+369 ->  9.999999999999999E+384 Overflow  Inexact Rounded
ddadd81821 add -9999999999999999E+369 -9E+369 -> -9.999999999999999E+384 Overflow  Inexact Rounded

ddadd81900 add  .2100    12345678901234.00    ->  12345678901234.21  Rounded
ddadd81901 add  .2101    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81902 add  .2110    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81903 add  .2150    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81904 add  .2151    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81907 add  .2160    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81908 add  .2170    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81909 add  .2199    12345678901234.00    ->  12345678901234.21  Inexact Rounded
ddadd81911 add -.2199   -12345678901234.00    -> -12345678901234.21  Inexact Rounded

ddadd82000 add  .2400    12345678901234.00    ->  12345678901234.24  Rounded
ddadd82001 add  .2401    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82002 add  .2410    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82003 add  .2450    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82004 add  .2451    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82007 add  .2460    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82008 add  .2470    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82009 add  .2499    12345678901234.00    ->  12345678901234.24  Inexact Rounded
ddadd82011 add -.2499   -12345678901234.00    -> -12345678901234.24  Inexact Rounded

ddadd82100 add  .2500    12345678901234.00    ->  12345678901234.25  Rounded
ddadd82101 add  .2501    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82102 add  .2510    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82103 add  .2550    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82104 add  .2551    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82107 add  .2560    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82108 add  .2570    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82109 add  .2599    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82111 add -.2599   -12345678901234.00    -> -12345678901234.26  Inexact Rounded

ddadd82200 add  .2600    12345678901234.00    ->  12345678901234.26  Rounded
ddadd82201 add  .2601    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82202 add  .2610    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82203 add  .2650    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82204 add  .2651    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82207 add  .2660    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82208 add  .2670    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82209 add  .2699    12345678901234.00    ->  12345678901234.26  Inexact Rounded
ddadd82211 add -.2699   -12345678901234.00    -> -12345678901234.26  Inexact Rounded

ddadd82300 add  .2900    12345678901234.00    ->  12345678901234.29  Rounded
ddadd82301 add  .2901    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82302 add  .2910    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82303 add  .2950    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82304 add  .2951    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82307 add  .2960    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82308 add  .2970    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82309 add  .2999    12345678901234.00    ->  12345678901234.29  Inexact Rounded
ddadd82311 add -.2999   -12345678901234.00    -> -12345678901234.29  Inexact Rounded

-- Null tests
ddadd9990 add 10  # -> NaN Invalid_operation
ddadd9991 add  # 10 -> NaN Invalid_operation

Youez - 2016 - github.com/yon3zu
LinuXploit