���� JFIF  XX �� �� �     $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222�� ��" �� 4     ��   �� �,�PG"Z_�4�˷����kjز�Z�,F+��_z�,�© �����zh6�٨�ic�fu��� #ډb���_�N� ?� �wQ���5-�~�I���8��� �TK<5o�Iv-� ����k�_U_����� ~b�M��d��� �Ӝ�U�Hh��?]��E�w��Q���k�{��_}qFW7HTՑ��Y��F� ?_�'ϔ��_�Ջt� �=||I �� 6�έ"�����D���/[�k�9�� �Y�8 ds|\���Ҿp6�Ҵ���]��.����6� z<�v��@]�i% �� $j��~ �g��J>��no����pM[me�i$[�� �� s�o�ᘨ�˸ nɜG-�ĨU�ycP� 3.DB�li�;� �hj���x 7Z^�N�h��� ���N3u{�:j �x�힞��#M &��jL P@ _���� P�� &��o8 ������9 �����@Sz 6�t7#O�ߋ � s}Yf�T� ��lmr����Z)'N��k�۞p ����w\�T ȯ?�8` �O��i{wﭹW�[�r�� ��Q4F�׊�� �3m&L�=��h3� ���z~��#� \�l :�F,j@�� ʱ�wQT����8�"kJO��� 6�֚l���� }��� R�>ډK���]��y����&����p�}b�� ;N�1�m�r$� |��7�>e�@ B�TM*-i H��g�D�)� E�m�|�ؘbҗ�a ��Ҿ���� t4��� o���G��*oCN�rP���Q��@z,|?W[0 �����:�n,j WiE��W� �$~/�hp\��?��{(�0���+�Y8rΟ�+����>S-S�� ��VN;� }�s?.����� w �9��˟<���Mq4�Wv' ��{)0�1mB ��V����W[� ����8�/<� �%���wT^�5���b��)iM� p g�N�&ݝ� �VO~� q���u���9� ����!��J27��� �$ O-���! �: �%H��� ـ ����y�ΠM=t{!S�� oK8������ t<����è :a�� ����[���� �ա�H���~��w��Qz`�p o�^ �� ��Q��n�  �,uu�C� $ ^���,� �����8�#��:�6��e�|~� ��!�3� 3.�\0�� q��o�4`.|� ����y�Q�`~;�d�ׯ,��O�Zw�������`73�v�܋�< ���Ȏ�� ـ4k��5�K�a�u�=9Yd��$>x�A�&�� j0� ���vF��� Y� |�y��� ~�6�@c��1vOp �Ig�� ��4��l�OD� ��L����� R���c���j�_�uX 6��3?nk��Wy�f;^*B� ��@ �~a�`��Eu������ +� �� 6�L��.ü>��}y���}_�O�6�͐�:�Yr G�X��kG�� ���l^w�� �~㒶sy� �Iu�!� W ��X��N�7BV��O��!X�2����wvG�R�f�T#�����t�/?���%8�^�W�aT ��G�cL�M���I��(J����1~�8�?aT ���]����AS�E��(��*E}� 2�� #I/�׍qz��^t�̔��� b�Yz4x ���t�){ OH� �+(E��A&�N�������XT��o��"�XC�� '���)}�J�z�p� ��~5�}�^����+�6����w��c��Q�| Lp�d�H��}�(�.|����k��c4^� "�����Z?ȕ ��a< �L�!0 39C� �Eu� C�F�Ew�ç ;�n?�*o���B�8�bʝ���'#Rqf�� �M}7����]��� �s2tcS{�\icTx;�\��7K���P ���ʇ Z O-��~�� c>"��?�� �����P ��E��O�8��@�8��G��Q�g�a�Վ���󁶠 �䧘��_%#r�>� 1�z�a�� eb��qcP ѵ��n���#L��� =��׀t� L�7�` ��V��� A{�C:�g���e@ �w1 Xp 3�c3�ġ���� p��M"'-�@n4���fG� �B3�DJ�8[Jo�ߐ���gK)ƛ��$���� � ��8�3�����+���� �����6�ʻ���� ���S�kI�*KZlT _`�� �?��K� ���QK�d ����B`�s}�>���` ��*�>��,*@J�d�oF*� ���弝��O}�k��s��]��y�ߘ ��c1G�V���<=�7��7����6 �q�PT��tXԀ�!9*4�4Tހ 3XΛex�46�� �Y��D ����� �BdemDa����\�_l,� �G�/���֌7���Y�](�xTt^%�GE�����4�}bT ���ڹ�����; Y)���B�Q��u��>J/J � ⮶.�XԄ��j�ݳ� +E��d ��r�5�_D �1 �� o�� �B�x�΢�#� ��<��W�����8���R6�@ g�M�.��� dr�D��>(otU��@ x=��~v���2� ӣ�d�oBd ��3�eO�6�㣷�� ���ݜ 6��6Y��Qz`�� S��{���\P �~z m5{J/L��1������<�e�ͅPu� b�]�ϔ ���'�� ����f�b� Zpw��c`"��i���BD@:)ִ�:�]��h v�E� w���T�l ��P� ��"Ju�}��وV J��G6��. J/�Qgl߭�e�����@�z�Zev2u� )]կ��� ��7x�� �s�M�-<ɯ�c��r� v�����@��$�ޮ}lk���a�� �'����>x��O\�Z Fu>��� ��ck#��&:��`�$ �ai�>2Δ����l���oF[h� �lE�ܺ�Π k:)���` �� $[6�����9�����kOw�\|��� 8}������ބ:��񶐕� �I�A1/� =�2[�,�!��.}gN#�u����b ��� ~� �݊��}34q��� �d�E��L c��$ ��"�[q�U�硬g^��%B � z���r�p J�ru%v\h 1Y�ne` ǥ:g�� �pQM~�^� Xi� ��`S�:V2 9.�P���V� ?B�k�� AEvw%�_�9C�Q����wKekP ؠ�\� ;Io d�{ ߞo�c1eP��� �\� `����E=���@K<�Y�� �eڼ�J ���w����{av�F�'�M�@ /J��+9p ���|]���� �Iw &` ��8���& M�hg ��[�{ ��Xj�� %��Ӓ� $��(��� �ʹN��� <>�I���RY� ��K2�NPlL�ɀ )��&e� ���B+ь����( � �JTx ���_?EZ� }@ 6�U���뙢ط�z��dWI� n` D����噥�[��uV��"�G& Ú����2 g�}&m� �?ċ �"����Om#� ������� � ��{� ON��"S�X ��Ne��ysQ���@ Fn��Vg��� dX�~nj� ]J�<�K]: ��FW�� b�������62 �=��5f����JKw� �bf�X� 55��~J �%^� ���:�-�QIE��P��v�nZum� z � ~ə ���� ���ة����;�f��\v��� g�8�1��f2 4;�V���ǔ�)��� �9���1\�� c��v�/'Ƞ�w����� ��$�4�R-��t�� �� e�6�/�ġ �̕Ecy�J���u�B���<�W�ַ~�w[B1L۲�-JS΂�{���΃���� ��A��20�c# �� @    0!1@AP"#2Q`$3V�%45a6�FRUq���   � ���^7ׅ,$n� ������+��F�`��2X'��0vM��p�L=������ 5��8������u�p~���.�`r�����\��� O��,ư�0oS ��_�M�����l���4�kv\JSd���x���SW�<��Ae�IX����������$I���w�:S���y���›R��9�Q[���,�5�;�@]�%���u�@ *ro�lbI �� ��+���%m:�͇ZV�����u�̉����θau<�fc�.����{�4Ա� �Q����*�Sm��8\ujqs]{kN���)qO�y�_*dJ�b�7���yQqI&9�ԌK!�M}�R�;�� ����S�T���1���i[U�ɵz�]��U)V�S6���3$K{� ߊ<�(� E]Զ[ǼENg�����'�\?#)Dkf��J���o��v���'�%ƞ�&K�u� !��b�35LX�Ϸ��63$K�a�;�9>,R��W��3�3� d�JeTYE.Mϧ��-�o�j3+y��y^�c�������VO�9NV\nd�1 ��!͕_)a�v;����թ�M�lWR1��)El��P;��yوÏ�u 3�k�5Pr6<�⒲l�!˞*��u־�n�!�l:����UNW ��%��Chx8vL'��X�@��*��)���̮��ˍ��� � ��D-M�+J�U�kvK����+�x8��cY������?�Ԡ��~3mo��|�u@[XeY�C�\Kp�x8�oC�C�&����N�~3-H���� ��MX�s�u<`���~"WL��$8ξ��3���a�)|:@�m�\���^�`�@ҷ)�5p+��6���p�%i)P M���ngc�����#0Aruz���RL+xSS?���ʮ}()#�t��mˇ!��0}}y����<�e� �-ή�Ԩ��X������ MF���ԙ~l L.3���}�V뽺�v��� ��멬��Nl�)�2����^�Iq��a��M��qG��T�����c3#������3U�Ǎ���}��לS�|qa��ڃ�+���-��2�f����/��bz��ڐ�� �ݼ[2�ç����k�X�2�* �Z�d���J�G����M*9W���s{��w���T��x��y,�in�O�v��]���n����P�$� JB@=4�OTI�n��e�22a\����q�d���%�$��(���:���: /*�K[PR�fr\nڙdN���F�n�$�4� [�� U�zƶ����� �mʋ���,�ao�u 3�z� �x��Kn����\[��VFmbE;�_U��&V�Gg�]L�۪&#n%�$ɯ� dG���D�TI=�%+AB�Ru#��b4�1�»x�cs�YzڙJG��f��Il� �d�eF'T� iA��T���uC�$����Y��H?����[!G`}���ͪ� �纤Hv\������j�Ex�K���!���OiƸ�Yj�+u-<���'q����uN�*�r\��+�]���<�wOZ.fp�ێ��,-*)V?j-kÊ#�`�r��dV����(�ݽBk�����G�ƛk�QmUڗe��Z���f}|����8�8��a���i��3'J�����~G_�^���d�8w������ R�`(�~�.��u���l�s+g�bv���W���lGc}��u���afE~1�Ue������Z�0�8�=e�� f@/�jqEKQQ�J� �oN��J���W5~M>$6�Lt�;$ʳ{���^��6�{����v6���ķܰg�V�cnn �~z�x�«�,2�u�?cE+Ș�H؎�%�Za�)���X>uW�Tz�Nyo����s���FQƤ��$��*�&�LLXL)�1�" L��eO��ɟ�9=���:t��Z���c��Ž���Y?�ӭV�wv�~,Y��r�ۗ�|�y��GaF�����C�����.�+� ���v1���fήJ�����]�S��T��B��n5sW}y�$��~z�'�c ��8 ��� ,! �p��VN�S��N�N�q��y8z˱�A��4��*��'������2n<�s���^ǧ˭P�Jޮɏ�U�G�L�J�*#��<�V��t7�8����TĜ>��i}K%,���)[��z�21z ?�N�i�n1?T�I�R#��m-�����������������1����lA�`��fT5+��ܐ�c�q՝��ʐ��,���3�f2U�եmab��#ŠdQ�y>\��)�SLY����w#��.���ʑ�f��� ,"+�w�~�N�'�c�O�3F�������N<���)j��&��,-� �љ���֊�_�zS���TǦ����w�>��?�������n��U仆�V���e�����0���$�C�d���rP �m�׈e�Xm�Vu� �L��.�bֹ��� �[Դaզ���*��\y�8�Է:�Ez\�0�Kq�C b��̘��cө���Q��=0Y��s�N��S.��� 3.���O�o:���#���v7�[#߫ ��5�܎�L���Er4���9n��COWlG�^��0k�%<���ZB���aB_���������'=��{i�v�l�$�uC���mƎҝ{�c㱼�y]���W�i ��ߧc��m�H� m�"�"�����;Y�ߝ�Z�Ǔ�����:S#��|}�y�,/k�Ld� TA�(�AI$+I3��;Y*���Z��}|��ӧO��d�v��..#:n��f>�>���ȶI�TX��� 8��y����"d�R�|�)0���=���n4��6ⲑ�+��r<�O�܂~zh�z����7ܓ�HH�Ga롏���nCo�>������a ���~]���R���̲c?�6(�q�;5%� |�uj�~z8R =X��I�V=�|{v�Gj\gc��q����z�؋%M�ߍ����1y��#��@f^���^�>N��� ��#x#۹��6�Y~�?�dfPO��{��P�4��V��u1E1J �*|���%�� �JN��`eWu�zk M6���q t[�� ��g�G���v��WIG��u_ft����5�j�"�Y�:T��ɐ���*�;� e5���4����q$C��2d�}���� _S�L#m�Yp��O�.�C�;��c����Hi#֩%+) �Ӎ��ƲV���SYź��g |���tj��3�8���r|���V��1#;.SQ�A[���S������#���`n�+���$��$ I �P\[�@�s��(�ED�z���P��])8�G#��0B��[ى��X�II�q<��9�~[Z멜�Z�⊔IWU&A>�P~�#��dp<�?����7���c��'~���5 ��+$���lx@�M�dm��n<=e�dyX��?{�|Aef ,|n3�<~z�ƃ�uۧ�����P��Y,�ӥQ�*g�#먙R�\���;T��i,��[9Qi歉����c>]9�� ��"�c��P�� �Md?٥��If�ت�u��k��/����F��9�c*9��Ǎ:�ØF���z�n*�@|I�ށ9����N3{'��[�'ͬ�Ҳ4��#}��!�V� Fu��,�,mTIk���v C�7v���B�6k�T9��1�*l� '~��ƞF��lU��'�M ����][ΩũJ_�{�i�I�n��$�� �L�� j��O�dx�����kza۪��#�E��Cl����x˘�o�����V���ɞ�ljr��)�/,�߬h�L��#��^��L�ф�,íMƁe�̩�NB�L�����iL����q�}��(��q��6IçJ$�W�E$��:������=#����(�K�B����zђ <��K(�N�۫K�w��^O{!����) �H���>x�������lx�?>Պ�+�>�W���,Ly!_�D���Ō�l���Q�!�[ �S����J��1��Ɛ�Y}��b,+�Lo�x�ɓ)����=�y�oh�@�꥟/��I��ѭ=��P�y9��� �ۍYӘ�e+�p�Jnϱ?V\SO%�(�t� ���=?MR�[Ș�����d�/ ��n�l��B�7j� ��!�;ӥ�/�[-���A�>� dN�sLj ��,ɪv��=1c�.SQ�O3�U���ƀ�ܽ�E����������̻��9G�ϷD�7(�}��Ävӌ\� y�_0[w ���<΍>����a_��[0+�L��F.�޺��f�>oN�T����q;���y\��bՃ��y�jH�<|q-eɏ�_?_9+P���Hp$�����[ux�K w�Mw��N�ی'$Y2�=��q���KB��P��~�� ����Yul:�[<����F1�2�O���5=d����]Y�sw:���Ϯ���E��j,_Q��X��z`H1,#II ��d�wr��P˂@�ZJV����y$�\y�{}��^~���[:N����ߌ�U�������O��d�����ؾe��${p>G��3c���Ė�lʌ�� ת��[��`ϱ�-W����dg�I��ig2��� ��}s ��ؤ(%#sS@���~���3�X�nRG�~\jc3�v��ӍL��M[JB�T��s3}��j�Nʖ��W����;7� �ç?=X�F=-�=����q�ߚ���#���='�c��7���ڑW�I(O+=:uxq�������������e2�zi+�kuG�R��������0�&e�n���iT^J����~\jy���p'dtG��s����O��3����9* �b#Ɋ�� p������[Bws�T�>d4�ۧs���nv�n���U���_�~,�v����ƜJ1��s�� �QIz�� )�(lv8M���U=�;����56��G���s#�K���MP�=��LvyGd��}�VwWBF�'�à �?MH�U�g2�� ����!�p�7Q��j��ڴ����=��j�u��� Jn�A s���uM������e��Ɔ�Ҕ�!) '��8Ϣ�ٔ� �ޝ(��Vp���צ֖d=�IC�J�Ǡ{q������kԭ�߸���i��@K����u�|�p=..�*+����x�����z[Aqġ#s2a�Ɗ���RR�)*HRsi�~�a &f��M��P����-K�L@��Z��Xy�'x�{}��Zm+���:�)�) IJ�-i�u���� ���ܒH��'� L(7�y�GӜq���� j��� 6ߌg1�g�o���,kر���tY�?W,���p���e���f�OQS��!K�۟cҒA�|ս�j�>��=⬒��˧L[�� �߿2JaB~R��u�:��Q�] �0H~���]�7��Ƽ�I���( }��cq '�ήET���q�?f�ab���ӥvr� �)o��-Q��_'����ᴎo��K������;��V���o��%���~OK ����*��b�f:���-ťIR��`B�5!RB@���ï�� �u �̯e\�_U�_������� g�ES��3������� QT��a�� ��x����U<~�c?�*�#]�MW,[8O�a�x��]�1bC|踤�P��lw5V%�)�{t�<��d��5���0i�XSU��m:��Z�┵�i�"��1�^B�-��P�hJ��&)O��*�D��c�W��vM��)����}���P��ܗ-q����\mmζZ-l@�}��a��E�6��F�@��&Sg@���ݚ�M����� ȹ 4����#p�\H����dYDo�H���"��\��..R�B�H�z_�/5˘����6��KhJR��P�mƶi�m���3� ,#c�co��q�a)*P t����R�m�k�7x�D�E�\Y�閣_X�<���~�)���c[[�BP����6�Yq���S��0����%_����;��Àv�~�| VS؇ ��'O0��F0��\���U�-�d@�����7�SJ*z��3n��y��P����O��������� m�~�P�3|Y��ʉr#�C�<�G~�.,! ���bqx���h~0=��!ǫ�jy����l� O,�[B��~��|9��ٱ����Xly�#�i�B��g%�S��������tˋ���e���ې��\[d�t)��.+u�|1 ������#�~Oj����hS�%��i.�~X���I�H�m��0n���c�1uE�q��cF�RF�o���7� �O�ꮧ� ���ۛ{��ʛi5�rw?׌#Qn�TW��~?y$��m\�\o����%W� ?=>S�N@�� �Ʈ���R����N�)�r"C�:��:����� �����#��qb��Y�. �6[��2K����2u�Ǧ�HYR��Q�MV��� �G�$��Q+.>�����nNH��q�^��� ����q��mM��V��D�+�-�#*�U�̒ ���p욳��u:�������IB���m� ��PV@O���r[b= �� ��1U�E��_Nm�yKbN�O���U�}�the�`�|6֮P>�\2�P�V���I�D�i�P�O;�9�r�mAHG�W�S]��J*�_�G��+kP�2����Ka�Z���H�'K�x�W�MZ%�O�YD�Rc+o��?�q��Ghm��d�S�oh�\�D�|:W������UA�Qc yT�q� �����~^�H��/��#p�CZ���T�I�1�ӏT����4��"�ČZ�����}��`w�#�*,ʹ�� ��0�i��課�Om�*�da��^gJ݅{���l�e9uF#T�ֲ��̲�ٞC"�q���ߍ ոޑ�o#�XZTp����@ o�8��(jd��xw�]�,f���`~� |,s��^����f�1���t��|��m�򸄭/ctr��5s��7�9Q�4�H1꠲BB@ l9@���C�����+�wp�xu�£Yc�9��?`@#�o�mH�s2��)�=��2�.�l����jg�9$�Y�S�%*L������R�Y������7Z���,*=�䷘$�������arm�o�ϰ���UW.|�r�uf����IGw�t����Zwo��~5 ��YյhO+=8fF�)�W�7�L9lM�̘·Y���֘YLf�큹�pRF���99.A �"wz��=E\Z���'a� 2��Ǚ�#;�'}�G���*��l��^"q��+2FQ� hj��kŦ��${���ޮ-�T�٭cf�|�3#~�RJ����t��$b�(R��(����r���dx� >U b�&9,>���%E\� Ά�e�$��'�q't��*�א���ެ�b��-|d���SB�O�O��$�R+�H�)�܎�K��1m`;�J�2�Y~9��O�g8=vqD`K[�F)k�[���1m޼c��n���]s�k�z$@��)!I �x՝"v��9=�ZA=`Ɠi �:�E��)` 7��vI��}d�YI�_ �o�:ob���o ���3Q��&D&�2=�� �Ά��;>�h����y.*ⅥS������Ӭ�+q&����j|UƧ��� �}���J0��WW< ۋS�)jQR�j���Ư��rN)�Gű�4Ѷ(�S)Ǣ�8��i��W52���No˓� ۍ%�5brOn�L�;�n��\G����=�^U�dI���8$�&���h��'���+�(������cȁ߫k�l��S^���cƗjԌE�ꭔ��gF���Ȓ��@���}O���*;e�v�WV���YJ\�]X'5��ղ�k�F��b 6R�o՜m��i N�i���� >J����?��lPm�U��}>_Z&�KK��q�r��I�D�Չ~�q�3fL�:S�e>���E���-G���{L�6p�e,8��������QI��h��a�Xa��U�A'���ʂ���s�+טIjP�-��y�8ۈZ?J$��W�P� ��R�s�]��|�l(�ԓ��sƊi��o(��S0 ��Y� 8�T97.�����WiL��c�~�dxc�E|�2!�X�K�Ƙਫ਼�$((�6�~|d9u+�qd�^3�89��Y�6L�.I�����?���iI�q���9�)O/뚅����O���X��X�V��ZF[�یgQ�L��K1���RҖr@v�#��X�l��F���Нy�S�8�7�kF!A��sM���^rkp�jP�DyS$N���q�� nxҍ!U�f�!eh�i�2�m ���`�Y�I�9r�6� �TF���C}/�y�^���Η���5d�'��9A-��J��>{�_l+�`��A���[�'��յ�ϛ#w:݅�%��X�}�&�PSt�Q�"�-��\縵�/����$Ɨh�Xb�*�y��BS����;W�ջ_mc�����vt?2}1�;qS�d�d~u:2k5�2�R�~�z+|HE!)�Ǟl��7`��0�<�,�2*���Hl-��x�^����'_TV�gZA�'j� ^�2Ϊ��N7t�����?w�� �x1��f��Iz�C-Ȗ��K�^q�;���-W�DvT�7��8�Z�������� hK�(P:��Q- �8�n�Z���܃e貾�<�1�YT<�,�����"�6{ / �?�͟��|1�:�#g��W�>$����d��J��d�B�� =��jf[��%rE^��il:��B���x���Sּ�1հ��,�=��*�7 fcG��#q� �eh?��2�7�����,�!7x��6�n�LC�4x��},Geǝ�tC.��vS �F�43��zz\��;QYC,6����~;RYS/6���|2���5���v��T��i����������mlv��������&� �nRh^ejR�LG�f���? �ۉҬܦƩ��|��Ȱ����>3����!v��i�ʯ�>�v��オ�X3e���_1z�Kȗ\<������!�8���V��]��?b�k41�Re��T�q��mz��TiOʦ�Z��Xq���L������q"+���2ۨ��8}�&N7XU7Ap�d�X��~�׿��&4e�o�F��� �H�� ��O���č�c�� 懴�6���͉��+)��v;j��ݷ�� �UV�� i��� j���Y9GdÒJ1��詞�����V?h��l�� ��l�cGs�ځ�������y�Ac���� �\V3�? �� ܙg�>qH�S,�E�W�[�㺨�uch�⍸�O�}���a��>�q�6�n6� ���N6�q�� ���� N    ! 1AQaq�0@����"2BRb�#Pr���3C`��Scst���$4D���%Td��  ? � ��N����a��3��m���C���w��������xA�m�q�m��� m������$����4n淿t'��C"w��zU=D�\R+w�p+Y�T�&�պ@��ƃ��3ޯ?�Aﶂ��aŘ���@-�����Q�=���9D��ռ�ѻ@��M�V��P��܅�G5�f�Y<�u=,EC)�<�Fy'�"�&�չ�X~f��l�KԆV��?�� �W�N����=(� �;���{�r����ٌ�Y���h{�١������jW����P���Tc�����X�K�r��}���w�R��%��?���E��m�� �Y�q|����\lEE4� ��r���}�lsI�Y������f�$�=�d�yO����p�����yBj8jU�o�/�S��?�U��*������ˍ�0����� �u�q�m [�?f����a�� )Q�>����6#������� ?����0UQ����,IX���(6ڵ[�DI�MNލ�c&���υ�j\��X�R|,4��� j������T�hA�e��^���d���b<����n�� �즇�=!���3�^�`j�h�ȓr��jẕ�c�,ٞX����-����a�ﶔ���#�$��]w�O��Ӫ�1y%��L�Y<�wg#�ǝ�̗`�x�xa�t�w��»1���o7o5��>�m뭛C���Uƃߜ}�C���y1Xνm�F8�jI���]����H���ۺиE@I�i;r�8ӭ���� V�F�Շ| ��&?�3|x�B�MuS�Ge�=Ӕ�#BE5G�� ���Y!z��_e��q�р/W>|-�Ci߇�t�1ޯќd�R3�u��g�=0 5��[?�#͏��q�cf���H��{ ?u�=?�?ǯ���}Z��z���hmΔ�BFTW�����<�q� (v� ��!��z���iW]*�J�V�z��gX֧A�q�&��/w���u�gYӘa���; �i=����g:��?2�dž6�ى�k�4�>�Pxs����}������G�9� �3 ���)gG�R<>r h�$��'nc�h�P��Bj��J�ҧH� -��N1���N��?��~��}-q!=��_2hc�M��l�vY%UE�@|�v����M2�.Y[|y�"Eï��K�ZF,�ɯ?,q�?v�M 80jx�"�;�9vk�����+ ֧�� �ȺU��?�%�vcV��mA�6��Qg^M��� �A}�3�nl� QRN�l8�kkn�'�����(��M�7m9و�q���%ޟ���*h$Zk"��$�9��: �?U8�Sl��,,|ɒ��xH(ѷ����Gn�/Q�4�P��G�%��Ա8�N��!� �&�7�;���eKM7�4��9R/%����l�c>�x;������>��C�:�����t��h?aKX�bhe�ᜋ^�$�Iհ �hr7%F$�E��Fd���t��5���+�(M6�t����Ü�UU|zW�=a�Ts�Tg������dqP�Q����b'�m���1{|Y����X�N��b �P~��F^F:����k6�"�j!�� �I�r�`��1&�-$�Bevk:y���#y w��I0��x��=D�4��tU���P�ZH��ڠ底taP��6����b>�xa� ���Q�#� WeF��ŮNj�p�J* mQ�N��� �*I�-*�ȩ�F�g�3 �5��V�ʊ�ɮ�a��5F���O@{���NX��?����H�]3��1�Ri_u��������ѕ�� ����0��� F��~��:60�p�͈�S��qX#a�5>���`�o&+�<2�D����: �������ڝ�$�nP���*)�N�|y�Ej�F�5ټ�e���ihy�Z �>���k�bH�a�v��h�-#���!�Po=@k̆IEN��@��}Ll?j�O������߭�ʞ���Q|A07x���wt!xf���I2?Z��<ץ�T���cU�j��]�� 陎Ltl �}5�ϓ��$�,��O�mˊ�;�@O��jE��j(�ا,��LX���LO���Ц�90�O �.����a��nA���7������j4 ��W��_ٓ���zW�jcB������y՗+EM�)d���N�g6�y1_x��p�$Lv :��9�"z��p���ʙ$��^��JԼ*�ϭ����o���=x�Lj�6�J��u82�A�H�3$�ٕ@�=Vv�]�'�qEz�;I˼��)��=��ɯ���x �/�W(V���p�����$ �m�������u�����񶤑Oqˎ�T����r��㠚x�sr�GC��byp�G��1ߠ�w e�8�$⿄����/�M{*}��W�]˷.�CK\�ުx���/$�WP w���r� |i���&�}�{�X� �>��$-��l���?-z���g����lΆ���(F���h�vS*���b���߲ڡn,|)mrH[���a�3�ר�[1��3o_�U�3�TC�$��(�=�)0�kgP���� ��u�^=��4 �WYCҸ:��vQ�ר�X�à��tk�m,�t*��^�,�}D*� �"(�I��9R����>`�`��[~Q]�#af��i6l��8���6�:,s�s�N6�j"�A4���IuQ��6E,�GnH��zS�HO�uk�5$�I�4��ؤ�Q9�@��C����wp �BGv[]�u�Ov��� 0I4���\��y�����Q�Ѹ��~>Z��8�T��a��q�ޣ;z��a���/��S��I:�ܫ_�|������>=Z����8:�S��U�I�J��"IY���8%b8���H��:�QO�6�;7�I�S��J��ҌAά3��>c���E+&jf$eC+�z�;��V����� �r���ʺ������my�e���aQ�f&��6�ND ��.:��NT�vm�<- u���ǝ\MvZY�N�NT��-A�>jr!S��n�O 1�3�Ns�%�3D@���`������ܟ 1�^c<���� �a�ɽ�̲�Xë#�w�|y�cW�=�9I*H8�p�^(4���՗�k��arOcW�tO�\�ƍR��8����'�K���I�Q�����?5�>[�}��yU�ײ -h��=��% q�ThG�2�)���"ו3]�!kB��*p�FDl�A���,�eEi�H�f�Ps�����5�H:�Փ~�H�0Dت�D�I����h�F3�������c��2���E��9�H��5�zԑ�ʚ�i�X�=:m�xg�hd(�v����׊�9iS��O��d@0ڽ���:�p�5�h-��t�&���X�q�ӕ,��ie�|���7A�2���O%P��E��htj��Y1��w�Ѓ!����  ���� ࢽ��My�7�\�a�@�ţ�J �4�Ȼ�F�@o�̒?4�wx��)��]�P��~�����u�����5�����7X ��9��^ܩ�U;Iꭆ 5 �������eK2�7(�{|��Y׎ �V��\"���Z�1� Z�����}��(�Ǝ"�1S���_�vE30>���p;� ΝD��%x�W�?W?v����o�^V�i�d��r[��/&>�~`�9Wh��y�;���R�� � ;;ɮT��?����r$�g1�K����A��C��c��K��l:�'��3 c�ﳯ*"t8�~l��)���m��+U,z��`( �>yJ�?����h>��]��v��ЍG*�{`��;y]��I�T� ;c��NU�fo¾h���/$���|NS���1�S�"�H��V���T���4��uhǜ�]�v;���5�͠x��'C\�SBpl���h}�N����� A�Bx���%��ޭ�l��/����T��w�ʽ]D�=����K���ž�r㻠l4�S�O?=�k �M:� ��c�C�a�#ha���)�ѐxc�s���gP�iG�� {+���x���Q���I= �� z��ԫ+ �8"�k�ñ�j=|����c ��y��CF��/ ��*9ж�h{ �?4�o� ��k�m�Q�N�x��;�Y��4膚�a�w?�6�> e]�����Q�r�:����g�,i"�����ԩA� *M�<�G��b�if��l^M��5� �Ҩ�{����6J��ZJ�����P�*�����Y���ݛu�_4�9�I8�7���������,^ToR���m4�H��?�N�S�ѕw��/S��甍�@�9H�S�T��t�ƻ���ʒU��*{Xs�@����f��� ��֒Li�K{H�w^���������Ϥm�tq���s� ���ք��f:��o~s��g�r��ט� �S�ѱC�e]�x���a��) ���(b-$(�j>�7q�B?ӕ�F��hV25r[7 Y� }L�R��}����*sg+��x�r�2�U=�*'WS��ZDW]�WǞ�<��叓���{�$�9Ou4��y�90-�1�'*D`�c�^o?(�9��u���ݐ��'PI&� f�Jݮ�������:wS����jfP1F:X �H�9dԯ�� �˝[�_54 �}*;@�ܨ�� ð�yn�T���?�ןd�#���4rG�ͨ��H�1�|-#���Mr�S3��G�3�����)�.᧏3v�z֑��r����$G"�`j �1t��x0<Ɔ�Wh6�y�6��,œ�Ga��gA����y��b��)� �h�D��ß�_�m��ü �gG;��e�v��ݝ�nQ� ��C����-�*��o���y�a��M��I�>�<���]obD��"�:���G�A��-\%LT�8���c�)��+y76���o�Q�#*{�(F�⽕�y����=���rW�\p���۩�c���A���^e6��K������ʐ�cVf5$�'->���ՉN"���F�"�UQ@�f��Gb~��#�&�M=��8�ט�JNu9��D��[̤�s�o�~��� ��� G��9T�tW^g5y$b��Y'��س�Ǵ�=��U-2 #�MC�t(�i� �lj�@Q 5�̣i�*�O����s�x�K�f��}\��M{E�V�{�υ��Ƈ�����);�H����I��fe�Lȣr�2��>��W� I�Ȃ6������i��k�� �5�YOxȺ����>��Y�f5'��|��H+��98pj�n�.O�y�������jY��~��i�w'������l�;�s�2��Y��:'lg�ꥴ)o#'Sa�a�K��Z� �m��}�`169�n���"���x��I ��*+� }F<��cГ���F�P�������ֹ*�PqX�x۩��,� ��N�� �4<-����%����:��7����W���u�`����� $�?�I��&����o��o��`v�>��P��"��l���4��5'�Z�gE���8���?��[�X�7(��.Q�-��*���ތL@̲����v��.5���[��=�t\+�CNܛ��,g�SQnH����}*F�G16���&:�t��4ُ"A��̣��$�b �|����#rs��a�����T�� ]�<�j��B S�('$�ɻ� �wP;�/�n��?�ݜ��x�F��yUn�~mL*-�������Xf�wd^�a�}��f�,=t�׵i�.2/wpN�Ep8�OР���•��R�FJ� 55TZ��T �ɭ�<��]��/�0�r�@�f��V��V����Nz�G��^���7hZi����k��3�,kN�e|�vg�1{9]_i��X5y7� 8e]�U����'�-2,���e"����]ot�I��Y_��n�(JҼ��1�O ]bXc���Nu�No��pS���Q_���_�?i�~�x h5d'�(qw52] ��'ޤ�q��o1�R!���`ywy�A4u���h<קy���\[~�4�\ X�Wt/� 6�����n�F�a8��f���z �3$�t(���q��q�x��^�XWeN'p<-v�!�{�(>ӽDP7��ո0�y)�e$ٕv�Ih'Q�EA�m*�H��RI��=:��� ���4牢) �%_iN�ݧ�l]� �Nt���G��H�L��� ɱ�g<���1V�,�J~�ٹ�"K��Q�� 9�HS�9�?@��k����r�;we݁�]I�!{ �@�G�[�"��`���J:�n]�{�cA�E����V��ʆ���#��U9�6����j�#Y�m\��q�e4h�B�7��C�������d<�?J����1g:ٳ���=Y���D�p�ц� ׈ǔ��1�]26؜oS�'��9�V�FVu�P�h�9�xc�oq�X��p�o�5��Ա5$�9W�V(�[Ak�aY錎qf;�'�[�|���b�6�Ck��)��#a#a˙��8���=äh�4��2��C��4tm^ �n'c� ��]GQ$[Wҿ��i���vN�{Fu ��1�gx��1┷���N�m��{j-,��x�� Ūm�ЧS�[�s���Gna���䑴�� x�p 8<������97�Q���ϴ�v�aϚG��Rt�Һ׈�f^\r��WH�JU�7Z���y)�vg=����n��4�_)y��D'y�6�]�c�5̪ �\� �PF�k����&�c;��cq�$~T�7j ���nç]�<�g ":�to�t}�159�<�/�8������m�b�K#g'I'.W����� 6��I/��>v��\�MN��g���m�A�yQL�4u�Lj�j9��#44�t��l^�}L����n��R��!��t��±]��r��h6ٍ>�yҏ�N��fU�� ���� Fm@�8}�/u��jb9������he:A�y�ծw��GpΧh�5����l}�3p468��)U��d��c����;Us/�֔�YX�1�O2��uq�s��`hwg�r~�{ R��mhN��؎*q 42�*th��>�#���E����#��Hv�O����q�}����� 6�e��\�,Wk�#���X��b>��p}�դ��3���T5��†��6��[��@ �P�y*n��|'f�֧>�lư΂�̺����SU�'*�q�p�_S�����M�� '��c�6��� ��m�� ySʨ;M��r���Ƌ�m�Kxo,���Gm�P��A�G�:��i��w�9�}M(�^�V��$ǒ�ѽ�9���|���� �a����J�SQ�a���r�B;����}���ٻ֢�2�%U���c�#�g���N�a�ݕ�'�v�[�OY'��3L�3�;,p�]@�S��{ls��X�'���c�jw� k'a�.��}�}&�� �dP�*�bK=ɍ!����;3n�gΊU�ߴmt�'*{,=SzfD� A��ko~�G�aoq�_mi}#�m�������P�Xhύ��� �mxǍ�΂���巿zf��Q���c���|kc�����?���W��Y�$���_Lv����l߶��c���`?����l�j�ݲˏ!V��6����U�Ђ(A���4y)H���p�Z_�x��>���e�� R��$�/�`^'3qˏ�-&Q�=?��CFVR �D�fV�9��{�8g�������n�h�(P"��6�[�D���< E�����~0<@�`�G�6����Hг�cc�� �c�K.5��D��d�B���`?�XQ��2��ٿyqo&+�1^� DW�0�ꊩ���G�#��Q�nL3��c���������/��x ��1�1 [y�x�პCW��C�c�UĨ80�m�e�4.{�m��u���I=��f�����0QRls9���f���������9���~f�����Ǩ��a�"@�8���ȁ�Q����#c�ic������G��$���G���r/$W�(��W���V�"��m�7�[m�A�m����bo��D� j����۳� l���^�k�h׽����� ��#� iXn�v��eT�k�a�^Y�4�BN�� ĕ�� 0    !01@Q"2AaPq3BR������ ? � ��@4�Q�����T3,���㺠�W�[=JK�Ϟ���2�r^7��vc�:�9 �E�ߴ�w�S#d���Ix��u��:��Hp��9E!�� V 2;73|F��9Y���*ʬ�F��D����u&���y؟��^EA��A��(ɩ���^��GV:ݜDy�`��Jr29ܾ�㝉��[���E;Fzx��YG��U�e�Y�C���� ����v-tx����I�sם�Ę�q��Eb�+P\ :>�i�C'�;�����k|z�رn�y]�#ǿb��Q��������w�����(�r|ӹs��[�D��2v-%��@;�8<a���[\o[ϧw��I!��*0�krs)�[�J9^��ʜ��p1)� "��/_>��o��<1����A�E�y^�C��`�x1'ܣn�p��s`l���fQ��):�l����b>�Me�jH^?�kl3(�z:���1ŠK&?Q�~�{�ٺ�h�y���/�[��V�|6��}�KbX����mn[-��7�5q�94�������dm���c^���h� X��5��<�eޘ>G���-�}�دB�ޟ� ��|�rt�M��V+�]�c?�-#ڛ��^ǂ}���Lkr���O��u�>�-D�ry� D?:ޞ�U��ǜ�7�V��?瓮�"�#���r��չģVR;�n���/_� ؉v�ݶe5d�b9��/O��009�G���5n�W����JpA�*�r9�>�1��.[t���s�F���nQ� V 77R�]�ɫ8����_0<՜�IF�u(v��4��F�k�3��E)��N:��yڮe��P�`�1}�$WS��J�SQ�N�j �ٺ��޵�#l���ј(�5=��5�lǏmoW�v-�1����v,W�mn��߀$x�<����v�j(����c]��@#��1������Ǔ���o'��u+����;G�#�޸��v-lη��/(`i⣍Pm^� ��ԯ̾9Z��F��������n��1��� ��]�[��)�'������ :�֪�W��FC����� �B9،!?���]��V��A�Վ�M��b�w��G F>_DȬ0¤�#�QR�[V��kz���m�w�"��9ZG�7'[��=�Q����j8R?�zf�\a�=��O�U����*oB�A�|G���2�54 �p��.w7� �� ��&������ξxGHp� B%��$g�����t�Џ򤵍z���HN�u�Я�-�'4��0�� ;_�� 3     !01"@AQa2Pq#3BR������ ? � �ʩca��en��^��8���<�u#��m*08r��y�N"�<�Ѳ0��@\�p��� �����Kv�D��J8�Fҽ� �f�Y��-m�ybX�NP����}�!*8t(�OqѢ��Q�wW�K��ZD��Δ^e��!� ��B�K��p~�����e*l}z#9ң�k���q#�Ft�o��S�R����-�w�!�S���Ӥß|M�l޶V��!eˈ�8Y���c�ЮM2��tk���� ������J�fS����Ö*i/2�����n]�k�\���|4yX�8��U�P.���Ы[���l��@"�t�<������5�lF���vU�����W��W��;�b�cД^6[#7@vU�xgZv��F�6��Q,K�v��� �+Ъ��n��Ǣ��Ft���8��0��c�@�!�Zq s�v�t�;#](B��-�nῃ~���3g������5�J�%���O������n�kB�ĺ�.r��+���#�N$?�q�/�s�6��p��a����a��J/��M�8��6�ܰ"�*������ɗud"\w���aT(����[��F��U՛����RT�b���n�*��6���O��SJ�.�ij<�v�MT��R\c��5l�sZB>F��<7�;EA��{��E���Ö��1U/�#��d1�a�n.1ě����0�ʾR�h��|�R��Ao�3�m3 ��%�� ���28Q� ��y��φ���H�To�7�lW>����#i`�q���c����a��� �m,B�-j����݋�'mR1Ήt�>��V��p���s�0IbI�C.���1R�ea�����]H�6�������� ��4B>��o��](��$B���m�����a�!=� �?�B� K�Ǿ+�Ծ"�n���K��*��+��[T#�{ E�J�S����Q�����s�5�:�U�\wĐ�f�3����܆&�)��� �I���Ԇw��E T�lrTf6Q|R�h:��[K�� �z��c֧�G�C��%\��_�a �84��HcO�bi��ؖV��7H �)*ģK~Xhչ0��4?�0��� �E<���}3���#���u�?�� ��|g�S�6ꊤ�|�I#Hڛ� �ա��w�X��9��7���Ŀ%�SL��y6č��|�F�a 8���b� �$�sק�h���b9RAu7�˨p�Č�_\*w��묦��F ����4D~�f����|(�"m���NK��i�S�>�$d7SlA��/�²����SL��|6N�}���S�˯���g��]6��; �#�.��<���q'Q�1|KQ$�����񛩶"�$r�b:���N8�w@��8$�� �AjfG|~�9F ���Y��ʺ��Bwؒ������M:I岎�G��`s�YV5����6��A �b:�W���G�q%l�����F��H���7�������Fsv7� �k�� 403WebShell
403Webshell
Server IP : 127.0.0.1  /  Your IP : 10.100.1.254
Web Server : Apache/2.4.58 (Win64) OpenSSL/3.1.3 PHP/8.0.30
System : Windows NT WIZC-EXTRANET 10.0 build 19045 (Windows 10) AMD64
User : SYSTEM ( 0)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : OFF  |  Perl : OFF  |  Python : OFF  |  Sudo : OFF  |  Pkexec : OFF
Directory :  /xampp/perl/vendor/lib/Math/Prime/Util/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /xampp/perl/vendor/lib/Math/Prime/Util/ZetaBigFloat.pm
package Math::Prime::Util::ZetaBigFloat;
use strict;
use warnings;

BEGIN {
  $Math::Prime::Util::ZetaBigFloat::AUTHORITY = 'cpan:DANAJ';
  $Math::Prime::Util::ZetaBigFloat::VERSION = '0.73';
}

BEGIN {
  do { require Math::BigInt;  Math::BigInt->import(try=>"GMP,Pari"); }
    unless defined $Math::BigInt::VERSION;
  use Math::BigFloat;
}
#my $_oldacc = Math::BigFloat->accuracy();
#Math::BigFloat->accuracy(undef);


# Riemann Zeta($k) for integer $k.
# So many terms and digits are used so we can quickly do bignum R.
my @_Riemann_Zeta_Table = (
  '0.64493406684822643647241516664602518921894990',   # zeta(2) - 1
  '0.20205690315959428539973816151144999076498629',
  '0.082323233711138191516003696541167902774750952',
  '0.036927755143369926331365486457034168057080920',
  '0.017343061984449139714517929790920527901817490',
  '0.0083492773819228268397975498497967595998635606',
  '0.0040773561979443393786852385086524652589607906',
  '0.0020083928260822144178527692324120604856058514',
  '0.00099457512781808533714595890031901700601953156',
  '0.00049418860411946455870228252646993646860643576',
  '0.00024608655330804829863799804773967096041608846',
  '0.00012271334757848914675183652635739571427510590',
  '0.000061248135058704829258545105135333747481696169',
  '0.000030588236307020493551728510645062587627948707',
  '0.000015282259408651871732571487636722023237388990',
  '0.0000076371976378997622736002935630292130882490903',
  '0.0000038172932649998398564616446219397304546972190',
  '0.0000019082127165539389256569577951013532585711448',
  '0.00000095396203387279611315203868344934594379418741',
  '0.00000047693298678780646311671960437304596644669478',
  '0.00000023845050272773299000364818675299493504182178',
  '0.00000011921992596531107306778871888232638725499778',
  '0.000000059608189051259479612440207935801227503918837',
  '0.000000029803503514652280186063705069366011844730920',
  '0.000000014901554828365041234658506630698628864788168',
  '0.0000000074507117898354294919810041706041194547190319',
  '0.0000000037253340247884570548192040184024232328930593',
  '0.0000000018626597235130490064039099454169480616653305',
  '0.00000000093132743241966818287176473502121981356795514',
  '0.00000000046566290650337840729892332512200710626918534',
  '0.00000000023283118336765054920014559759404950248298228',
  '0.00000000011641550172700519775929738354563095165224717',
  '0.000000000058207720879027008892436859891063054173122605',
  '0.000000000029103850444970996869294252278840464106981987',
  '0.000000000014551921891041984235929632245318420983808894',
  '0.0000000000072759598350574810145208690123380592648509256',
  '0.0000000000036379795473786511902372363558732735126460284',
  '0.0000000000018189896503070659475848321007300850305893096',
  '0.00000000000090949478402638892825331183869490875386000099',
  '0.00000000000045474737830421540267991120294885703390452991',
  '0.00000000000022737368458246525152268215779786912138298220',
  '0.00000000000011368684076802278493491048380259064374359028',
  '0.000000000000056843419876275856092771829675240685530571589',
  '0.000000000000028421709768893018554550737049426620743688265',
  '0.000000000000014210854828031606769834307141739537678698606',
  '0.0000000000000071054273952108527128773544799568000227420436',
  '0.0000000000000035527136913371136732984695340593429921456555',
  '0.0000000000000017763568435791203274733490144002795701555086',
  '0.00000000000000088817842109308159030960913863913863256088715',
  '0.00000000000000044408921031438133641977709402681213364596031',
  '0.00000000000000022204460507980419839993200942046539642366543',
  '0.00000000000000011102230251410661337205445699213827024832229',
  '0.000000000000000055511151248454812437237365905094302816723551',
  '0.000000000000000027755575621361241725816324538540697689848904',
  '0.000000000000000013877787809725232762839094906500221907718625',
  '0.0000000000000000069388939045441536974460853262498092748358742',
  '0.0000000000000000034694469521659226247442714961093346219504706',
  '0.0000000000000000017347234760475765720489729699375959074780545',
  '0.00000000000000000086736173801199337283420550673429514879071415',
  '0.00000000000000000043368086900206504874970235659062413612547801',
  '0.00000000000000000021684043449972197850139101683209845761574010',
  '0.00000000000000000010842021724942414063012711165461382589364744',
  '0.000000000000000000054210108624566454109187004043886337150634224',
  '0.000000000000000000027105054312234688319546213119497764318887282',
  '0.000000000000000000013552527156101164581485233996826928328981877',
  '0.0000000000000000000067762635780451890979952987415566862059812586',
  '0.0000000000000000000033881317890207968180857031004508368340311585',
  '0.0000000000000000000016940658945097991654064927471248619403036418',
  '0.00000000000000000000084703294725469983482469926091821675222838642',
  '0.00000000000000000000042351647362728333478622704833579344088109717',
  '0.00000000000000000000021175823681361947318442094398180025869417612',
  '0.00000000000000000000010587911840680233852265001539238398470699902',
  '0.000000000000000000000052939559203398703238139123029185055866375629',
  '0.000000000000000000000026469779601698529611341166842038715592556134',
  '0.000000000000000000000013234889800848990803094510250944989684323826',
  '0.0000000000000000000000066174449004244040673552453323082200147137975',
  '0.0000000000000000000000033087224502121715889469563843144048092764894',
  '0.0000000000000000000000016543612251060756462299236771810488297723589',
  '0.00000000000000000000000082718061255303444036711056167440724040096811',
  '0.00000000000000000000000041359030627651609260093824555081412852575873',
  '0.00000000000000000000000020679515313825767043959679193468950443365312',
  '0.00000000000000000000000010339757656912870993284095591745860911079606',
  '0.000000000000000000000000051698788284564313204101332166355512893608164',
  '0.000000000000000000000000025849394142282142681277617708450222269121159',
  '0.000000000000000000000000012924697071141066700381126118331865309299779',
  '0.0000000000000000000000000064623485355705318034380021611221670660356864',
  '0.0000000000000000000000000032311742677852653861348141180266574173608296',
  '0.0000000000000000000000000016155871338926325212060114057052272720509148',
  '0.00000000000000000000000000080779356694631620331587381863408997398684847',
  '0.00000000000000000000000000040389678347315808256222628129858130379479700',
  '0.00000000000000000000000000020194839173657903491587626465673047518903728',
  '0.00000000000000000000000000010097419586828951533619250700091044144538432',
  '0.000000000000000000000000000050487097934144756960847711725486604360898735',
  '0.000000000000000000000000000025243548967072378244674341937966175648398693',
  '0.000000000000000000000000000012621774483536189043753999660777148710632765',
  '0.0000000000000000000000000000063108872417680944956826093943332037500694712',
  '0.0000000000000000000000000000031554436208840472391098412184847972814371270',
  '0.0000000000000000000000000000015777218104420236166444327830159601782237092',
  '0.00000000000000000000000000000078886090522101180735205378276604136878962534',
  '0.00000000000000000000000000000039443045261050590335263935513575963608141044',
  '0.00000000000000000000000000000019721522630525295156852383215213909988473843',
  '0.000000000000000000000000000000098607613152626475748329967604159218377505181',
  '0.000000000000000000000000000000049303806576313237862187667644776975622245754',
  '0.000000000000000000000000000000024651903288156618927101395103287812527732549',
  '0.000000000000000000000000000000012325951644078309462219884645277065145764150',
  '0.0000000000000000000000000000000061629758220391547306663380205162648609383631',
  '0.0000000000000000000000000000000030814879110195773651853009095507130250105264',
  '0.0000000000000000000000000000000015407439555097886825433610878728841686496904',
  '0.00000000000000000000000000000000077037197775489434125525075496895150086398231',
  '0.00000000000000000000000000000000038518598887744717062214878116197893873445220',
  '0.00000000000000000000000000000000019259299443872358530924885847349054449873362',
  '0.000000000000000000000000000000000096296497219361792654015918534245633717541108',
  '0.000000000000000000000000000000000048148248609680896326805122366289604787579935',
  '0.000000000000000000000000000000000024074124304840448163334948882867065229914248',
  '0.000000000000000000000000000000000012037062152420224081644937008007620275295506',
  '0.0000000000000000000000000000000000060185310762101120408149560261951727031681191',
  '0.0000000000000000000000000000000000030092655381050560204049738538280405431094080',
  '0.0000000000000000000000000000000000015046327690525280102016522071575050028177934',
  '0.00000000000000000000000000000000000075231638452626400510054786365991407868525313',
  '0.00000000000000000000000000000000000037615819226313200255018118519034423181524371',
  '0.00000000000000000000000000000000000018807909613156600127505967704863451341028548',
  '0.000000000000000000000000000000000000094039548065783000637519533342138055875645097',
  '0.000000000000000000000000000000000000047019774032891500318756331610342627662060287',
  '0.000000000000000000000000000000000000023509887016445750159377020784929180405960294',
  '0.000000000000000000000000000000000000011754943508222875079688128719050545728002924',
  '0.0000000000000000000000000000000000000058774717541114375398439371350539247056872356',
  '0.0000000000000000000000000000000000000029387358770557187699219261593698463000750878',
  '0.0000000000000000000000000000000000000014693679385278593849609489436325511324487536',
  '0.00000000000000000000000000000000000000073468396926392969248046975979881822702829326',
  '0.00000000000000000000000000000000000000036734198463196484624023330922692333378216377',
  '0.00000000000000000000000000000000000000018367099231598242312011613105596640698043218',
  '0.000000000000000000000000000000000000000091835496157991211560057891008818116853335663',
  '0.000000000000000000000000000000000000000045917748078995605780028887331354029547708393',
  '0.000000000000000000000000000000000000000022958874039497802890014424274658671814201226',
  '0.000000000000000000000000000000000000000011479437019748901445007205673656554920549667',
  '0.0000000000000000000000000000000000000000057397185098744507225036006822706837980911955',
  '0.0000000000000000000000000000000000000000028698592549372253612517996229494773449843879',
  '0.0000000000000000000000000000000000000000014349296274686126806258995720794504878051247',
  '0.00000000000000000000000000000000000000000071746481373430634031294970624129584900687276',
  '0.00000000000000000000000000000000000000000035873240686715317015647482652117145953820656',
  '0.00000000000000000000000000000000000000000017936620343357658507823740439409357478069335',
  '0.000000000000000000000000000000000000000000089683101716788292539118699241549402394210037',
  '0.000000000000000000000000000000000000000000044841550858394146269559348635608906198392806',
  '0.000000000000000000000000000000000000000000022420775429197073134779673989415854766292332',
  '0.000000000000000000000000000000000000000000011210387714598536567389836885245061272178142',
  '0.0000000000000000000000000000000000000000000056051938572992682836949184061349085990997301',
  '0.0000000000000000000000000000000000000000000028025969286496341418474591909049136205534180',
  '0.0000000000000000000000000000000000000000000014012984643248170709237295913982765839445600',
  '0.00000000000000000000000000000000000000000000070064923216240853546186479434774488319489698',
  '0.00000000000000000000000000000000000000000000035032461608120426773093239672340797200498749',
  '0.00000000000000000000000000000000000000000000017516230804060213386546619821154916280500674',
  '0.000000000000000000000000000000000000000000000087581154020301066932733099055722973670007705',
  '0.000000000000000000000000000000000000000000000043790577010150533466366549511177617590838630',
  '0.000000000000000000000000000000000000000000000021895288505075266733183274750027519047364241',
  '0.000000000000000000000000000000000000000000000010947644252537633366591637373159996274330429',
  '0.0000000000000000000000000000000000000000000000054738221262688166832958186859620770540479841',
  '0.0000000000000000000000000000000000000000000000027369110631344083416479093427750648326515819',
  '0.0000000000000000000000000000000000000000000000013684555315672041708239546713188745182016542',
  '0.00000000000000000000000000000000000000000000000068422776578360208541197733563655129305944821',
  '0.00000000000000000000000000000000000000000000000034211388289180104270598866781064699118259780',
  '0.00000000000000000000000000000000000000000000000017105694144590052135299433390278061047559013',
  '0.000000000000000000000000000000000000000000000000085528470722950260676497166950542676865892145',
  '0.000000000000000000000000000000000000000000000000042764235361475130338248583474988795642311765',
  '0.000000000000000000000000000000000000000000000000021382117680737565169124291737400216890944447',
  '0.000000000000000000000000000000000000000000000000010691058840368782584562145868668714802068411',
  '0.0000000000000000000000000000000000000000000000000053455294201843912922810729343238928532329351',
  '0.0000000000000000000000000000000000000000000000000026727647100921956461405364671584582440160440',
  '0.0000000000000000000000000000000000000000000000000013363823550460978230702682335780663944745475',
  '0.00000000000000000000000000000000000000000000000000066819117752304891153513411678864562139278223',
  '0.00000000000000000000000000000000000000000000000000033409558876152445576756705839419361874822728',
  '0.00000000000000000000000000000000000000000000000000016704779438076222788378352919705374539139236',
  '0.000000000000000000000000000000000000000000000000000083523897190381113941891764598512518034789088',
  '0.000000000000000000000000000000000000000000000000000041761948595190556970945882299251474130425513',
  '0.000000000000000000000000000000000000000000000000000020880974297595278485472941149624142102889746',
  '0.000000000000000000000000000000000000000000000000000010440487148797639242736470574811539397337203',
  '0.0000000000000000000000000000000000000000000000000000052202435743988196213682352874055924806327115',
  '0.0000000000000000000000000000000000000000000000000000026101217871994098106841176437027371676377257',
  '0.0000000000000000000000000000000000000000000000000000013050608935997049053420588218513488929259862',
  '0.00000000000000000000000000000000000000000000000000000065253044679985245267102941092566788283203421',
);
# Convert to BigFloat objects.
@_Riemann_Zeta_Table = map { Math::BigFloat->new($_) } @_Riemann_Zeta_Table;
# for k = 1 .. n :  (1 / (zeta(k+1) * k + k)
# Makes RiemannR run about twice as fast.
my @_Riemann_Zeta_Premult;
my $_Riemann_Zeta_premult_accuracy = 0;

# Select n = 55, good for 46ish digits of accuracy.
my $_Borwein_n = 55;
my @_Borwein_dk = (
  '1',
  '6051',
  '6104451',
  '2462539971',
  '531648934851',
  '71301509476803',
  '6504925195108803',
  '429144511928164803',
  '21392068013887742403',
  '832780518854440804803',
  '25977281563850106233283',
  '662753606729324750201283',
  '14062742362385399866745283',
  '251634235316509414702211523',
  '3841603462178827861104812483',
  '50535961819850087101900022211',
  '577730330374203014014104003011',
  '5782012706584553297863989289411',
  '50984922488525881477588707205571',
  '398333597655022403279683908035011',
  '2770992240330783259897072664469955',
  '17238422988353715312442126057365955',
  '96274027751337344115352100618133955',
  '484350301573059857715727453968687555',
  '2201794236784087151947175826243477955',
  '9068765987529892610841571032285864387',
  '33926582279822401059328069515697217987',
  '115535262182820447663793177744255246787',
  '358877507711760077538925500462137369027',
  '1018683886695854101193095537014797787587',
  '2646951832121008166346437186541363159491',
  '6306464665572570713623910486640730071491',
  '13799752848354341643763498672558481367491',
  '27780237373991939435100856211039992177091',
  '51543378762608611361377523633779417047491',
  '88324588911945720951614452340280439890371',
  '140129110249040241501243929391690331218371',
  '206452706984942815385219764876242498642371',
  '283527707823296964404071683165658912154051',
  '364683602811933600833512164561308162744771',
  '441935796522635816776473230396154031661507',
  '508231717051242054487234759342047053767107',
  '559351463001010719709990637083458540691907',
  '594624787018881191308291683229515933311427',
  '616297424973434835299724300924272199623107',
  '628083443816135918099559567176252011864515',
  '633714604276098212796088600263676671320515',
  '636056734158553360761837806887547188568515',
  '636894970116484676875895417679248215794115',
  '637149280289288581322870186196318041432515',
  '637213397278310656625865036925470191411651',
  '637226467136294189739463288384528579584451',
  '637228536449134002301138291602841035366851',
  '637228775173095037281299181461988671775171',
  '637228793021615488494769154535569803469251',
  '637228793670652595811622608101881844621763',
);
# "An Efficient Algorithm for the Riemann Zeta Function", Borwein, 1991.
# About 1.3n terms are needed for n digits of accuracy.
sub _Recompute_Dk {
  my $nterms = shift;
  $_Borwein_n = $nterms;
  @_Borwein_dk = ();
  my $orig_acc = Math::BigFloat->accuracy();
  Math::BigFloat->accuracy($nterms);
  foreach my $k (0 .. $nterms) {
    my $sum = Math::BigInt->bzero;
    my $num = Math::BigInt->new($nterms-1)->bfac();
    foreach my $i (0 .. $k) {
      my $den = Math::BigInt->new($nterms - $i)->bfac * Math::BigInt->new(2*$i)->bfac;
      $sum += $num->copy->bdiv($den);
      $num->bmul(4 * ($nterms+$i));
    }
    $sum->bmul($nterms);
    $_Borwein_dk[$k] = $sum;
  }
  Math::BigFloat->accuracy($orig_acc);
}

sub RiemannZeta {
  my($ix) = @_;

  my $x = (ref($ix) eq 'Math::BigFloat') ? $ix->copy : Math::BigFloat->new("$ix");
  $x->accuracy($ix->accuracy) if $ix->accuracy;
  my $xdigits = $ix->accuracy() || Math::BigFloat->accuracy() || Math::BigFloat->div_scale();

  if ($x == int($x) && $xdigits <= 44 && (int($x)-2) <= $#_Riemann_Zeta_Table) {
    my $izeta = $_Riemann_Zeta_Table[int($x)-2]->copy;
    $izeta->bround($xdigits);
    return $izeta;
  }

  # Note, this code likely will not work correctly without fixes for RTs:
  #
  #   43692 : blog and others broken
  #   43460 : exp and powers broken
  #
  # E.g:
  #   my $n = Math::BigFloat->new(11); $n->accuracy(64); say $n**1.1;  # 13.98
  #   my $n = Math::BigFloat->new(11); $n->accuracy(67); say $n**1.1;  # 29.98
  #
  # There is a hack that tries to work around some of the problem, but it
  # can't cover everything and it slows things down a lot.  There just isn't
  # any way to do this if the basic math operations don't work right.

  my $orig_acc = Math::BigFloat->accuracy();
  my $extra_acc = 5;
  if ($x > 15 && $x <= 50) { $extra_acc = 15; }

  $xdigits += $extra_acc;
  Math::BigFloat->accuracy($xdigits);
  $x->accuracy($xdigits);
  my $zero= $x->copy->bzero;
  my $one = $zero->copy->binc;
  my $two = $one->copy->binc;

  my $tol = ref($x)->new('0.' . '0' x ($xdigits-1) . '1');

  # Note: with bignum on, $d1->bpow($one-$x) doesn't change d1 !

  # This is a hack to turn 6^-40.5 into (6^-(40.5/4))^4.  It helps work around
  # the two RTs listed earlier, though does not completely fix their bugs.
  # It has the downside of making integer arguments very slow.

  my $superx = Math::BigInt->bone;
  my $subx = $x->copy;
  my $intx = int("$x");
  if ($Math::BigFloat::VERSION < 1.9996 || $x != $intx) {
    while ($subx > 1) {
      $superx->blsft(1);
      $subx /= $two;
    }
  }

  if (1 && $x == $intx && $x >= 2 && !($intx & 1) && $intx < 100) {
    # Mathworld equation 63.  How fast this is relative to the others is
    # dependent on the backend library and if we have MPUGMP.
    $x = int("$x");
    my $den = Math::Prime::Util::factorial($x);
    $xdigits -= $extra_acc;
    $extra_acc += length($den);
    $xdigits += $extra_acc;
    $one->accuracy($xdigits); $two->accuracy($xdigits);
    Math::BigFloat->accuracy($xdigits);
    $subx->accuracy($xdigits);  $superx->accuracy($xdigits);
    my $Pix = Math::Prime::Util::Pi($xdigits)->bpow($subx)->bpow($superx);
    my $Bn = Math::Prime::Util::bernreal($x,$xdigits);  $Bn = -$Bn if $Bn < 0;
    my $twox1 = $two->copy->bpow($x-1);
    #my $num = $Pix  *  $Bn  *  $twox1;
    #my $res = $num->bdiv($den)->bdec->bround($xdigits - $extra_acc);
    my $res = $Bn->bdiv($den)->bmul($Pix)->bmul($twox1)->bdec
              ->bround($xdigits-$extra_acc);
    Math::BigFloat->accuracy($orig_acc);
    return $res;
  }

  # Go with the basic formula for large x.
  if (1 && $x >= 50) {
    my $negsubx = $subx->copy->bneg;
    my $sum = $zero->copy;
    my $k = $two->copy->binc;
    while ($k->binc <= 1000) {
      my $term = $k->copy->bpow($negsubx)->bpow($superx);
      $sum += $term;
      last if $term < ($sum*$tol);
    }
    $k = $two+$two;
    $k->bdec(); $sum += $k->copy->bpow($negsubx)->bpow($superx);
    $k->bdec(); $sum += $k->copy->bpow($negsubx)->bpow($superx);
    $sum->bround($xdigits-$extra_acc);
    Math::BigFloat->accuracy($orig_acc);
    return $sum;
  }

  {
    my $dig = int($_Borwein_n / 1.3)+1;
    _Recompute_Dk( int($xdigits * 1.3) + 4 )  if $dig < $xdigits;
  }

  if (ref $_Borwein_dk[0] ne 'Math::BigInt') {
    @_Borwein_dk = map { Math::BigInt->new("$_") } @_Borwein_dk;
  }

  my $n = $_Borwein_n;

  my $d1 = $two ** ($one - $x);
  my $divisor = ($one - $d1) * $_Borwein_dk[$n];
  $divisor->bneg;
  $tol = ($divisor * $tol)->babs();

  my ($sum, $bigk) = ($zero->copy, $one->copy);
  my $negsubx = $subx->copy->bneg;
  foreach my $k (1 .. $n-1) {
    my $den = $bigk->binc()->copy->bpow($negsubx)->bpow($superx);
    my $term = ($k % 2) ? ($_Borwein_dk[$n] - $_Borwein_dk[$k])
                        : ($_Borwein_dk[$k] - $_Borwein_dk[$n]);
    $term = Math::BigFloat->new($term) unless ref($term) eq 'Math::BigFloat';
    $sum += $term * $den;
    last if $term->copy->babs() < $tol;
  }
  $sum += $_Borwein_dk[0] - $_Borwein_dk[$n];
  $sum = $sum->bdiv($divisor);
  $sum->bdec->bround($xdigits-$extra_acc);
  Math::BigFloat->accuracy($orig_acc);
  return $sum;
}

# Riemann R function
sub RiemannR {
  my($x) = @_;

  if (ref($x) eq 'Math::BigInt') {
    my $xacc = $x->accuracy();
    $x = Math::BigFloat->new($x);
    $x->accuracy($xacc) if $xacc;
  }
  $x = Math::BigFloat->new("$x") if ref($x) ne 'Math::BigFloat';
  my $xdigits = $x->accuracy || Math::BigFloat->accuracy() || Math::BigFloat->div_scale();
  my $extra_acc = 2;
  $xdigits += $extra_acc;
  my $orig_acc = Math::BigFloat->accuracy();
  Math::BigFloat->accuracy($xdigits);
  $x->accuracy($xdigits);
  my $tol = $x->copy->bone->brsft($xdigits-1, 10);
  my $sum = $x->copy->bone;

  if ($xdigits <= length($x->copy->as_int->bstr())) {

    for my $k (1 .. 1000) {
      my $mob = Math::Prime::Util::moebius($k);
      next if $mob == 0;
      $mob = Math::BigFloat->new($mob);
      my $term = $mob->bdiv($k) *
                 Math::Prime::Util::LogarithmicIntegral($x->copy->broot($k));
      $sum += $term;
      #warn "k = $k  term = $term  sum = $sum\n";
      last if abs($term) < ($tol * abs($sum));
    }

  } else {

    my ($flogx, $part_term, $fone, $bigk)
    = (log($x), Math::BigFloat->bone, Math::BigFloat->bone, Math::BigInt->bone);

    if ($_Riemann_Zeta_premult_accuracy < $xdigits) {
      @_Riemann_Zeta_Premult = ();
      $_Riemann_Zeta_premult_accuracy = $xdigits;
    }

    for my $k (1 .. 10000) {
      my $zeta_term = $_Riemann_Zeta_Premult[$k-1];
      if (!defined $zeta_term) {
        my $zeta = ($xdigits > 44) ? undef : $_Riemann_Zeta_Table[$k-1];
        if (!defined $zeta) {
          my $kz = $fone->copy->badd($bigk);  # kz is k+1
          if (($k+1) >= 100 && $xdigits <= 40) {
            # For this accuracy level, two terms are more than enough.  Also,
            # we should be able to miss the Math::BigFloat accuracy bug.  If we
            # try to do this for higher accuracy, things will go very bad.
            $zeta = Math::BigFloat->new(3)->bpow(-$kz)
                  + Math::BigFloat->new(2)->bpow(-$kz);
          } else {
            $zeta = Math::Prime::Util::ZetaBigFloat::RiemannZeta( $kz );
          }
        }
        $zeta_term = $fone / ($zeta * $bigk + $bigk);
        $_Riemann_Zeta_Premult[$k-1] = $zeta_term if defined $_Riemann_Zeta_Table[$k-1];
      }
      $part_term *= $flogx / $bigk;
      my $term = $part_term * $zeta_term;
      $sum += $term;
      #warn "k = $k  term = $term  sum = $sum\n";
      last if $term < ($tol*$sum);
      $bigk->binc;
    }

  }
  $sum->bround($xdigits-$extra_acc);
  Math::BigFloat->accuracy($orig_acc);
  return $sum;
}

#Math::BigFloat->accuracy($_oldacc);
#undef $_oldacc;

1;

__END__


# ABSTRACT: Perl Big Float versions of Riemann Zeta and R functions

=pod

=encoding utf8


=head1 NAME

Math::Prime::Util::ZetaBigFloat - Perl Big Float versions of Riemann Zeta and R functions


=head1 VERSION

Version 0.73


=head1 SYNOPSIS

Math::BigFloat versions`of the Riemann Zeta and Riemann R functions.  These
are kept in a separate module because they use a lot of big tables that we'd
prefer to only load if needed.


=head1 DESCRIPTION

Pure Perl implementations of Riemann Zeta and Riemann R using Math::BigFloat.
These functions are used if:

=over 4

=item The input is a BigInt, a BigFloat, or the bignum module has been loaded.

=item The L<Math::Prime::Util::GMP> module is not available or old.

=back

If you use these functions a lot, I B<highly> recommend you install
L<Math::Prime::Util::GMP>, which the main L<Math::Prime::Util> functions
will find.
These give B<much> better performance, and better accuracy.  You can also
use L<Math::Pari> and L<Math::MPFR> for the Riemann Zeta function.


=head1 FUNCTIONS

=head2 RiemannZeta

  my $z = RiemannZeta($s);

Given a floating point input C<s> where C<s E<gt>= 0.5>, returns the floating
point value of ζ(s)-1, where ζ(s) is the Riemann zeta function.  One is
subtracted to ensure maximum precision for large values of C<s>.  The zeta
function is the sum from k=1 to infinity of C<1 / k^s>

Results are calculated using either Borwein (1991) algorithm 2, or the basic
series.  Full input accuracy is attempted, but there are defects in
Math::BigFloat with high accuracy computations that make this difficult.


=head2 RiemannR

  my $r = RiemannR($x);

Given a positive non-zero floating point input, returns the floating
point value of Riemann's R function.  Riemann's R function gives a very close
approximation to the prime counting function.

Accuracy should be about 35 digits.


=head1 LIMITATIONS

Bugs in Math::BigFloat (RT 43692, RT 77105) cause many problems with this code.
I've attempted to work around them, but it is possible there are cases they
miss.

The accuracy goals (35 digits) are sometimes missed by a digit or two.


=head1 PERFORMANCE

Performance is quite bad.


=head1 SEE ALSO

L<Math::Prime::Util>

L<Math::Prime::Util::GMP>

L<Math::MPFR>

L<Math::Pari>


=head1 AUTHORS

Dana Jacobsen E<lt>dana@acm.orgE<gt>


=head1 COPYRIGHT

Copyright 2012 by Dana Jacobsen E<lt>dana@acm.orgE<gt>

This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself.

=cut

Youez - 2016 - github.com/yon3zu
LinuXploit